
AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23

AES256GCM 10G25G Reference Design

1. Introduction ... 1

2. Hardware Overview .. 1

2.1 LAxi2Reg .. 2

2.2 AsyncAxiReg .. 2

2.3 UserReg ... 3

2.3.1 Key setting ... 5

2.3.2 Parameter setting ... 5

2.3.3 Encryption/Decryption/Bypass ... 6

3. CPU Firmware .. 7

3.1 Set encryption/decryption key ... 7

3.2 Set encryption/decryption IV ... 7

3.3 Show Data Memory .. 8

3.4 Fill AAD Memory ... 9

3.5 Fill Plain Data Memory .. 10

3.6 Encrypt Data ... 10

3.7 Decrypt Data ... 11

3.8 Bypass Data ... 12

3.9 Clone Memory .. 12

3.10 Loop verification .. 12

4. Revision History .. 13

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 1

AES256GCM10G25G Reference Design

Rev1.03 29-Aug-2023

1. Introduction

This document describes the detail of AES256GCM10G25GIP reference design. In this
reference design, AES256GCM10G25GIP is used to encrypt/decrypt data between two
memories in FPGA and provide authentication tag. User can fill memory with Additional
Authenticated Data (AAD), plain or cipher data patterns, set key, Initialization Vector (IV), and
control test operation via serial console on test PC. More details of the hardware design and
CPU firmware are described as follows.

2. Hardware Overview

Figure 2-1 AES256GCM10G25GIP reference design block diagram

In this test environment, the AES256GCM10G25GIP, called AES256GCM, interface with two
dual-port RAMs with asymmetric ports, which are DpRam1 and DpRam2, as shown in Figure
2-1. AES256GCM and two RAMs are sub-modules in UserReg module within LAxi2Reg. CPU
system is designed to interface with FPGA logic through AXI4 Lite bus and interface with user
through serial console in test PC.

For user control interface, there are registers in UserReg to store parameters from user
such as encryption/decryption key, IV, number of AAD and data to encrypt or decrypt. Input
parameters are received from user via serial console.

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 2

For user data interface, UserReg is designed to be able to write pattern data or read data in
RAMs following user’s command and read encryption/decryption tag. DpRam1 is used to store
AAD and the DataIn from user which will be input data for AES256GCM. DpRam2 is used to
store output data from AES256GCM. Authentication tag is stored in registers which user can
read.

Because CPU system and AES256GCM run in different clock domain, AsyncAXIReg module
inside LAxi2Reg is designed as asynchronous circuit to support clock-crossing operation. Also,
AsyncAXIReg converts AXI4-Lite bus signal which is standard bus in CPU system to be register
interface. The details of LAxi2Reg module are described as follows.

2.1 LAxi2Reg

LAxi2Reg module is connected to CPU through AXI4-Lite bus. The hardware registers are
mapped to CPU memory address, as shown in Table 2-1. The control and status registers for
CPU access are designed in LAxi2Reg.

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32-bit data bus size (similar to
AXI4-Lite data bus size). Additionally, as shown in Figure 2-1, there are two clock domains
applied in this block, i.e., CpuClk which is used to interface with CPU through AXI4-Lite bus and
UserClk which is user clock domain for AES256GCM. AsyncAxiReg includes asynchronous
circuit between CpuClk and UserClk.

UserReg includes the register file of the parameters and the status signals of test logics,
including dual-port rams and AES256GCM. Both data interface and control interface of
AES256GCM are connected to UserReg. More details of AsyncAxiReg and UserReg are
described as follows.

2.2 AsyncAxiReg

This module is designed to convert the signal interface of AXI4-Lite to be register interface.
Also, it enables two clock domains, CpuClk and UserClk domain, to communicate.

To write register, RegWrEn is asserted to ‘1’ with the valid signal of RegAddr (Register
address in 32-bit unit), RegWrData (write data of the register), and RegWrByteEn (the byte
enable of this access: bit [0] is write enable for RegWrData[7:0], bit [1] is used for
RegWrData[15:8], …, and bit[3] is used for RegWrData[31:24]).

To read register, AsyncAxiReg asserts RegRdReq=’1’ with the valid value of RegAddr (the
register address in 32-bit unit). After that, the module waits until RegRdValid is asserted to ‘1’ to
get the read data through RegRdData signal at the same clock.

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 3

2.3 UserReg

This module is designed to write/read data in RAMs, read tag, control and check status of
AES256GCM corresponding with write register access or read register request from
AsyncAxiReg module. Memory map inside UserReg module is shown in Table 2-1. Timing
diagram of register interface is shown in Figure 2-2.

Table 2-1 Register map Definition

Address offset Register Name Rd/Wr Description

0x0000 ADDR_A1_REG Rd/Wr [10:4] – address A of DpRam1 (rAddrA1[10:4]).

0x0004 ADDR_A2_REG Rd/Wr [10:4] – address A of DpRam2 (rAddrA2[10:4]).

0x0008 AADINCNT_REG Wr [15:0] – length of AAD for encryption/decryption
(rAadInCount[15:0]).

0x000C DATAINCNT_REG Rd [1] – AES256GCM KeyIn busy flag (wKeyInBusy).

[0] – AES256GCM busy flag (wBusy).

Wr [15:0] – length of plain data for encryption/ decryption
(rDataInCnt[15:0]). rStart is asserted to ‘1’ and
encryption/decryption process is started.

0x0010 VER_REG Rd [31:0] – AES256GCM IP version (wVersion).

0x0014 DECEN_REG Rd/Wr [0] – AES256GCM mode of operation.
(rDecryptionEn)

0x0018 BYPASS_REG Rd/Wr [0] – AES256GCM Bypass mode of operation.
(rBypass)

0x0020 KEYIN_0_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[31:0]).

0x0024 KEYIN_1_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[63:32]).

0x0028 KEYIN_2_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[95:64]).

0x002C KEYIN_3_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[127:96]).

0x0030 KEYIN_4_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[159:128]).

0x0034 KEYIN_5_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[191:160]).

0x0038 KEYIN_6_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[223:192]).

0x003C KEYIN_7_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[255:224]).

0x0060 IVIN_0_REG Rd/Wr [31:0] – Encryption/Decryption IV (rIvIn[31:0]).

0x0064 IVIN_1_REG Rd/Wr [31:0] – Encryption/Decryption IV (rIvIn[63:32]).

0x0068 IVIN_2_REG Rd/Wr [31:0] – Encryption/Decryption IV (rIvIn[95:64]).

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 4

0x0080 TAG_0_REG Rd [31:0] – Authentication tag (rTagOut[31:0]).

0x0084 TAG_1_REG Rd [31:0] – Authentication tag (rTagOut[63:32]).

0x0088 TAG_2_REG Rd [31:0] – Authentication tag (rTagOut[95:64]).

0x008C TAG_3_REG Rd [31:0] – Authentication tag (rTagOut[127:96]).

0x2000~0x27FF DATAIN_ADDR Rd/Wr [31:0] – Data in DpRam1 (wRdDataB1).

0x4000~0x47FF DATAOUT_ADDR Rd/Wr [31:0] – Data in DpRam2 (wRdDataB2).

Figure 2-2 Register interface timing diagram

To read register, one multiplexer is designed to select the read data within each address
area. UserRegAddr[10:2] is applied in each register area to select the data. Next, the address
decoder uses UserRegAddr[15:11] to select the read data from each area for returning to CPU.
As shown in Figure 2-2, read data is valid in next two clock cycles. When UserRegRdReq is
active, rUserRegRdReq is asserted to ‘1’. Then rUserRdValid is active with the valid read value
of UserRegAddr.

To write register, UserRegWrEn is asserted to ‘1’ with the valid of UserRegAddr.
UserRegAddr[15:11] is used to decode that CPU accesses dual-port ram (DpRam) or internal
register area. When CPU accesses DpRam (UserRegAddr[15:11]=“00100” or “01000”),
Use rRe g A d dr [1 0 :2] i s se t t o b e t h e a d d re ss o f Dp Ra m. Fo r e xa mp le , when
UserRegAddr[15:0]=0x2004 and UserRegWrEn=’1’, DpRam1 will be filled with UserRegWrData
at Address 0x01. Otherwise, UserRegWrData is loaded to internal register which has matched
UserRegAddr[10:2] . For example, rAddrA1 is loaded by UserRegWrData when
UserRegAddr=0x0000.

UserRegWrByteEn signal is used when CPU firmware needs to access DpRam by using
32-bit, 16-bit or 8-bit pointer. UserRegWrByteEn[3:0] is mapped to Byte Write Enable port of
DpRam.

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 5

In this reference design, there are three main operations which are parameter setting,
encryption/decryption/bypass. Each operation is described as follows.

2.3.1 Key setting

For key setting, rKeyIn is set by writing register UserRegAddr=0x0020-0x003F as shown
in Table 2-1. When KEYIN_0_REG is written (UserRegAddr=0x0020), rKeyIn[31:0] is set. Then
rKeyInValid is asserted to ‘1’ as shown in Figure 2-3.

Figure 2-3 Timing diagram of key setting process

2.3.2 Parameter setting

For parameter setting, encryption/decryption mode is set by DECEN_REG. Bypass mode
is set by BYPASS_REG. IV and length of AAD are set by writing IVIN_0_REG to IVIN_2_REG
and AADCNT_REG, respectively. AAD and DataIn, which will be input data for AES256GCM,
are stored in DpRam1, address A of DpRam1 (rAddrA1) is set to 0x00 to access the first AAD
data by writing ADDR_A1_REG. DataOut from AES256GCM is stored in DpRam2. Before
starting encryption/decryption process, address A of DpRam2 (rAddrA2) is set to 0x00 for writing
the first output encrypted/decrypted data by writing ADDR_A2_REG. For setting length of
DataIn, rDataInCnt, DATAINCNT_REG is written and then rStart is asserted to ‘1’ to start
encryption/decryption as shown in Figure 2-4.

Figure 2-4 Timing diagram example of parameter setting

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 6

2.3.3 Encryption/Decryption/Bypass

DpRam1 has wEnableA1 as the read enable signal of the ram and wEnableA1 is asserted
to ‘1’ when rStart=‘1’ or wDataInRd=‘1’. For encryption/decryption process, rAddrA1 is set to
0x00 to access the first DataIn. When wEnableA1 is active, rAddrA1 is increased by 1 to access
next 512-bit DataIn. When wDataOutValid is active, wDataOut is loaded to DpRam2. Then
rAddrA2 is increased by 1 prepared for next DataOut as shown in Figure 2-5. Authentication tag
(rTagOut) is stored in register when wTagOutValid is active as shown in Table 2-1. User can
access the authentication tag by reading TAG_0_REG to TAG_7_REG.

Figure 2-5 Timing diagram of encryption/decryption/bypass process

Note: For bypass mode, wTagOutValid will not be active, and rTagOut is not valid.

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 7

3. CPU Firmware

After system boot-up, CPU initializes its peripherals such as UART and Timer and shows IP
version of AES256GCM. Then main menu is displayed. Main function runs in an infinite loop to
show the main menu and get keyboard input from user. User can select each menu via serial
console that will call the related functions. After functions finished running, the main menu is
displayed again. More details of the sequence in each menu are described as follows.

3.1 Set encryption/decryption key

This menu is used to set encryption/decryption key. set_key_or_iv function is called to
change key set. User can input “enter” key to skip input key and not change current key for
module. KEYIN_0_REG, 64-character, “KeyIn” are input parameters. set_key_or_iv function is
described in Table 3-1.

Table 3-1 change_key_set function

void set_key_or_iv(unsigned int *start_addr, unsigned int length_hex, char *label)

Parameter start_addr: register for set key or iv of module

length_hex: length character of key or iv

label: name of signal for module

Return value None

Description This function displays current key or iv on the console. Receive input new key
or iv in hexadecimal format or “enter” key to skip. User’s input will be ignored
if it is not hexadecimal format. Then the function monitors busy status until
busy status is not active. Then set the registers.

3.2 Set encryption/decryption IV

This menu is used to set Initialization Vector (IV). set_key_or_iv function is called to
change iv set. User can input “enter” key to skip input iv and not change current iv. IVIN_0_REG,
24-character, “IvIn” are input parameters.

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 8

3.3 Show Data Memory

This menu is used to show data in memory. User can set the number of data to show on
console in byte unit. The sequence of the firmware is as follows.

1) Receive the length of data in decimal format or “enter” key to use default value. If user
input ‘0’, the length of data to show will be default value. The length of data to show is
stored in length.

2) Call show_data function to show data in memory with DATAIN_ADDR and length as its
parameters. show_data function is described in Table 3-2.

Table 3-2 show_data function

void show_data(unsigned int base_addr, unsigned int length)

Parameter base_addr: base address to access memory

length: length of data to show

Return value None

Description This function shows data in both DpRam1 and DpRam2 corresponding to
length. CPU firmware reads data in DpRam1, starting at DATAIN_ADDR, and
shows on console. Also, CPU firmware reads data in DpRam2, starting at
DATAOUT_ADDR, and shows on console. If length is too large, length will be
set to the size of memory.

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 9

3.4 Fill AAD Memory

This menu is used to set the length of AAD and fill DpRam1 with AAD pattern. The
sequence of the firmware is as follows.

1) Receive the length of AAD in byte unit or “enter” key to set AAD length to zero. The
length of AAD is stored in aad_cnt and calculates the first address for fill data is stored
at start_addr.

2) Call fill_data function to choose AAD pattern and fill DpRam1 with selected pattern. The
input parameters of fill_data are 0x01, DATAIN_ADDR which is the first address for
AAD in DpRam1, and aad_cnt. fill_data function is described in Table 3-3.

3) Call show_data function to show AAD data for both DpRam1 and DpRam2
corresponding to aad_cnt and data_cnt.

Table 3-3 fill_data function

void fill_data(unsigned int zero_padding, unsigned int base_addr, unsigned int data_length)

Parameter zero_padding: zero padding to 128-bit, 1 to fill right-padding with zeros and 0
is ignored.

base_addr: base address to access memory

data_length: length of data to fill data pattern

Return value None

Description This function fills the selected pattern in memory corresponding to base_addr.
Before filling memory, the function shows data pattern choices (zeros, 8-bit,
16-bit, 32-bit counter) on serial console and waits for user’s input. For invalid
choice, the console will display the error message and wait until user input
new valid choice. Then selected data pattern is filled into memory by the
length of data (data length).

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 10

3.5 Fill Plain Data Memory

This menu is used to fill DpRam1 with plain data pattern. The sequence of the firmware is
as follows.

1) Receive the length of DataIn in byte unit or “enter” key to set length of data to zero. The
number of DataIn is stored in data_cnt.

2) Call fill_data function to choose data pattern and fill DpRam1 with selected pattern. The
input parameter of fill_data is 0x00, start_addr which is base address for DpRam1 and
data_cnt.

3) Call show_data function to show data in both DpRam1 and DpRam2 corresponding to
aad_cnt and data_cnt.

According to Table 3-3, there are four data pattern choices to fill memory that are zero
pattern, 8-bit counter pattern, 16-bit pattern and 32-bit pattern. For zero pattern, user can select
this choice to clear data memory. It makes user see the output of encryption/decryption more
clearly.

3.6 Encrypt Data

This menu is used to start encryption process with current encryption parameters. The
sequence of the firmware is as follows.

1) Call aes_command function to set mode of operation, the starting address, number of
AAD and DataIn to encrypt and check status. aes_command function is described in
Table 3-4.

2) Print AAD length and DataIn length in byte unit. Call show_data function to show data
in memory according to aad_cnt and data_cnt.

3) Call show_tag function to display encryption tag. show_tag function is described in
Table 3-5.

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 11

Table 3-4 aes_command function

void aes_command(unsigned int mode, unsigned int *AADCNT_REG, unsigned int aad_cnt,
unsigned int *DATACNT_REG, unsigned int data_cnt)

Parameter mode: mode of operation, 0 for encryption, 1 for decryption, 2 for bypass

AADCNT_REG: register for AAD length

aad_cnt: the number of AAD to operate

DATACNT_REG: register for data length

data_cnt: the number of data to operate

Return value None

Description This function set encryption/decryption mode by writing register DECEN_REG
and set Bypass mode by writing register BYPASS_REG, sets the number of
AAD by writing register AADCNT_REG with aad_cnt and sets the starting
address of DpRam1 and DpRam2 by writing register ADDR_A1_REG and
ADDR_A2_REG, respectively. Then DATACNT_REG is written with data_cnt
to set the number of data to operate. Also, DATACNT_REG is monitored to
check whether operation finish. When operation finished, *CMD_REG=0
which means AES256GCM is not busy (*DATACNT_REG= 0).

Table 3-5 show_tag function

void show_tag(unsigned int *TAG_REG)

Parameter TAG_REG: register for reading authentication tag

Return value None

Description This function reads authentication tag from TAG_REG to TAG_REG+0x000F
and prints tag on serial console.

3.7 Decrypt Data

This menu is used to start decryption process with current decryption parameters. The
sequence of the firmware is as follows.

1) Call aes_command function to set mode of operation, the starting address, number of
AAD and DataIn to decrypt and check status.

2) Print AAD length and DataIn length in byte unit. Call show_data function to show data
in memory according to aad_cnt and data_cnt.

3) Call show_tag function to display decryption tag.

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 12

3.8 Bypass Data

This menu is used to start bypass process with current bypass parameters. The sequence
of the firmware is as follows.

1) Call aes_command function to set mode of operation, the starting address, number of
AAD and DataIn to bypass and check status.

2) Print AAD length and DataIn length in byte unit. Call show_data function to show data
in memory according to aad_cnt and data_cnt.

3.9 Clone Memory

This menu is used to clone DpRam2 to DpRam1.

3.10 Loop verification

This menu is used to verify both encryption and decryption with the current parameters by
calling loop_verify function which is described in Table 3-6.

Table 3-6 loop_verify function

int loop_verify(unsigned int aad_cnt, unsigned int data_cnt)

Parameter aad_cnt: the number of AAD for encryption and decryption

data_cnt: the number of data for encryption and decryption

Return value Int: 0 for verification succeeded and -1 for verification failed

Description This function reads and stores plain data from DpRam1 for verification. Data
in DpRam2 is cleared. aes_command function is called to encrypt plain data
with current parameters. Then copy the data in DpRam2 to DpRam1 and
aes_command function is called to decrypt data with current parameters. The
decrypted data is compared with plain data before encryption process and
decryption tag is compared with encryption tag. Verification result will be
printed on serial console.

AES256GCM10G25GIP-refdesign-xilinx-en.docx

29-Aug-23 Page 13

4. Revision History

Revision Date Description

1.00 22-Jun-2022 Initial version release

1.02 20-Sep-2022 Update description for new design

1.03 20-Jan-2023 - Add Bypass feature.
- Improve performance.

