

APS-IP Introduction for Xilinx

Ver1.3E

- Function
- User Interface
- Performance and Size
- Development Environment/Reference Design
- Application

- SATA interface is now performance bottle neck
 - SSD Read/Write speed is limited to 600MB/sec SATA bandwidth
- Move to PCI Express for faster speed
 - PCIe GEN3 x4Iane can provide 4GB/sec transfer speed
- M.2 form factor suitable for compact product application
 - Width=22mm, Lenth=20/42/80/120mm, DIMM-like very small outline

<u>Current 2.5" SATA S</u> 24-Feb-16

Merit of PCIe SSD for Embedded System 1

High Bandwidth: 1.5GB/s for Read, 1GB/s for Write
Cost effective: Cost difference from SATA SSD is small

(http://www.bjorn3d.com/2015/03/480gb-hyperxpredator-m-2-pcie-ssd-shpm2280p2480g/6/)

Cost and Performance of M.2 PCIe SSD (Kingston 480GB)

- Various form factor
 - HHHL(Half-Height,Half-Length) general PCIe board
 - M.2 cost saving module
 - SFF-8639 of 2.5" drive compatible size

HHHL PCIe board

24-Feb-16

M.2 module (length=42/60/80mm)

Design Gateway

SFF-8639 package

Page 5

What's APS-IP

-> Reduction of AHCI PCIe SSD IP Core

- What's APS-IP?
- Function?
- How to use?
- User Merit?
- -> PCIe Root with full automatic SSD R/W function
 - -> Just connect with user logic, no need CPU&F/W
 - -> Can develop Storage Application in short period

- 1. Function: Full automatic access to PCIe SSD
 - No CPU and firmware necessary, just wired logic is enough
- 2. Interface: Simple and easy connection
 - Direct connection to Xilinx standard AXI PCIe bridge core via AXI
 - User I/F control is parameter with pulse, data is simple FIFO
- 3. High Performance and Compact size
 - Write=1262MB/s, Read=2213MB/s
 - Support PCIe GEN3 (Operation confirmed on Kintex Ultrascale)
 - Core size=482Slice,559DFF (for 7-series version)
- 4. Environment: Full reference design project
 - Full Vivado project with real board operation in the package

24-Feb-16

Design Gateway

APS-IP Merit 1: Function

- Special PCIe Root port function for SSD control
 - PCIe Initialization: BAR Init./MSI Interrupt set/Master mode set
 - SSD Status Monitor: Intr./Status automatic check
- AHCI Read/Write function
 - Control AHCI register by user R/W request and execute access
 - Data transfer and flow control between PCIe and FIFO

APS-IP Merit2: Command I/F

Write data waveform

Read data waveform

Dn-1 Y Dn

APS-IP Merit3: Performance

- Automatic PCIe SSD access by pure hard-wired logic
 - Intelligent state machine for complete read/write command execution
 - Minimum over head and best performance by synchronized circuit

D•G

APS-IP Merit3: Compact Size

- Optimized size with minimum resource consumption
 - Includes necessary control logic and temporary buffer only
 - Data FIFO is not in IP-Core so user can select FIFO size

Example Implementation Statistics for 7-Series device (PCIe Gen2)

Family	Example Device	Fmax (MHz)	Slice Regs	Slice LUTs	Slices ¹	Design Tools
Kintex-7	XC7K325TFFG900-2	125	559	1311	482	Vivado2014.4
Virtex-7	XC7VX485TFFG1761-2	125	559	1313	482	Vivado2014.4
Zynq-7000	XC7Z045FFG900-2	125	559	1311	485	Vivado2014.4

Example Implementation Statistics for Ultrascale device (PCIe Gen3)

Family	Example Device	Fmax (MHz)	LUT FF	LUT Logic	CLB	Design Tools	
Kintex-Ultrascale	XCKU040FFVA1156-2E	250	1230	650	270	Vivado2015.4	

APS-IP Core resource usage (Note: AXI-PCIe bridge IP from Xilinx is not included)

APS-IP Merit4: Environment

- Real operation check with Xilinx evaluation board
- Free bit-file for evaluation before IP-core purchase

D•G

APS-IP Merit4: Development Tool

- Adapter board for FPGA board evaluation (Part#: AB16-PCIeXOVR)
- Connect FPGA board to PCIe socket on component side
- Connect PCIe SSD to PCIe socket on solder side
- SSD R/W access via adapter board from APS-IP in FPGA

- Vivado project is attached with APS-IP deliverables
- Full source code (VHDL) except IP core
- Can save user system development duration
 - Confirm real board operation by original reference design.
 - Then modify a little to approach final user product.
 - Check real operation in each modification step.

Short-term development is possible without big turn back

24-Feb-16

Design Gateway

Page 15

APS-IP Application Example

- Space-Saving FPGA data logging system
 - Latest FPGA + M.2 SSD

System space image by FBG484 FPGA and M.2 SSD (unit: mm)

For more detail

- Detailed technical information available on the web site.
 - <u>http://www.dgway.com/APS-IP_X_E.html</u>
- Contact
 - Design Gateway Co,. Ltd.
 - sales@design-gateway.com
 - FAX: +66-2-261-2290

24-Feb-16

Page 17

Revision History

Design Gateway

Rev.	Date	Description
1.0E	16-Oct-15	English Version 1st release
1.1E	19-Oct-15	Correct some spell
1.2E	13-Jan-16	Improve IP-Core and R/W performance
1.3E	23-Feb-16	Support PCIe GEN3 (Kintex Ultrascale on KCU105)