dg_ll110gemacip_refdesign_

intel.doc m

LLI0GEMAC-IP reference design

L INTOAUCTION .. 1
2 HaAIOWAIE OVEIVIEW.....uii i eeeeeeeeiite et ettt e e e e e e e e e eet e e e e e e e e e eeetbaa e e e e eeeeeeeessnnneeeeeeeeeeennes 3
FZ O K0T 2 7N 4
pZ N I 0 1] Y 1 4
FZ B o 1o = (= o R 5
2 0T SRR 7
2.5 CPU and PeripheralS...........uuiiiiiiiiieeeie et e e e e e e et e e e e e e e eenees 9
2.5. 1 ASYNCAVIREQ ... 10
2.5.2 USEIREQ .. i ittt 12

3 CPU FilMWAIE SEOUEINCEuuutiiiitiiitiitiiittietieaseeeeeeasasesessssebses s ssee e b ebbbebsbssesebebesesnnnnnnes 14
3.1 RUN LOOPDACK TEST ... eeannnns 15
3.2 Function list in User appliCATIONuuuuummiiiiiiiiiiiiiiiiiiiiii e 16

I o] (0] T 1] (0] Y USSP 17

30-Jun-23

dg_l110gemacip_refdesign_intel.doc M

LL10GEMAC-IP reference design

Revl1l.0 30-Jun-23

1 Introduction

Typical solution

e I
CPU system

Very low latency solution

a N\
CPULess system

I

I

I

I

|

|

| User Logic —
| Logic

I

| G-
I

I

I

I

I

I

I

I

|

I

| Application

Software

-<\(Physical
&

Figure 1-1 Low latency solution

DG IPcore

Intel
Transceiver

10GbE PMA

—/

/ G

The application layer, transport layer, and network layer of Ethernet system in FPGA are mostly
implemented by the CPU software for system flexibility. The Link and Physical layer can be
designed by using 10G EMAC and 10G BASE-R PHY which are Intel IP core. In some
applications which are very sensitive about data latency such as HFT (High Frequency Trading),
using CPU system shows too much latency time because of software-hardware handling process.

To achieve the lowest latency time, pure hardwired logic is purposed. As shown in the right side of
Figure 1-1, the low-level protocol is designed by using LLLOGEMAC-IP operating with 10GbE
PMA. Moreover, the high-level protocols such as TCP/IP and UDP/IP can be implemented by
pure-hardwired logic such as TOE10GLL-IP, UDP10GTx-IP, and UDP10GRx-IP. By using all
hardwired logic solution, user can design simple logic for transferring the data via 10Gb Ethernet
system with achieving very low latency time.

LL10GEMAC-IP consists of EMAC and PCS logic (the top part of Physical layer) while PMA logic
(the low part of Physical layer) is implemented by using Intel Transceiver.

30-Jun-23 Page 1

dg_l110gemacip_refdesign_intel.doc m

/ Loopback Test \\
/ (FPGA)

Intel I e

|| SFP+ Loopback |

Avalon-ST1 PMA I/F PMA || oaseR) |
(BASER) | | v —— —— !

r
|
|
|
|
: 32-bit 32-bit 10GbE
|
|
|
|

—

Figure 1-2 Loopback Test to check latency time

To check latency time of LLILOGEMAC-IP, the simple test logic can be designed as shown in
Figure 1-2. SFP+ loopback module can be inserted for transferring the packet from Tx interface to
Rx interface. Also, the internal loopback inside the transceiver can be applied when SFP+
loopback module is not available.

To run the test, the user logic transfers the small packet and then verifies the received packet to
confirm the connection stability. Latency time can be measured by designing the counter which
starts counting at the Avalon-stream interface of LLLOGEMAC-IP from the first data of Tx path to
the first data of Rx path. Therefore, latency time from Intel Transceiver and SFP+ loopback
module is included.

CPU system is included for user interface by using Niosll command shell. The user can start the

test operation and see the result from the test on the console. More details of the demo are
described as follows.

30-Jun-23 Page 2

dg_l110gemacip_refdesign_intel.doc m

2 Hardware overview

l | LL10GEMACLpTest
Nios-lI |
Command shell |
— [@. J Avalon-MM
N— o —1
'S
AvI2Reg
MacTx* PMATxData E“\
Async H\X
AviReg el N_____
TxClk TxClk Transceiver | SFP:" tzzfeback }
X X
Reck | ik | 100mmERy | | PASER
UserReg /L/f
MacRx* PMARxData F—/
-)
/ Y
Stop | [Start
MacRoundTimer

Figure 2-1 Loopback Test Block Diagram

CPU system is included for easy user interface. The user sets the test parameters and checks the
test result on the console which communicates by using JTAG UART. CPU uses Avalon-MM bus
to interface with the hardware logic. Avi2Reg is the interface module to connect control and status
signals of the hardware for CPU setting and monitoring.

The loopback system uses PacketGen which is the test logic to generate small Ethernet packet to
LLI0OGEMAC-IP. The packet is transferred from LL10GEMAC-IP to Tx interface of Intel
Transceiver. The data stream can be loopback via SFP+ loopback module or internal loopback
inside the transceiver. After that, the packet is returned from the transceiver via Rx interface.
LL10GEMAC-IP decodes the packet and returned to PacketGen for verifying the data. The
received packet must be similar to the transmitted packet if the connection is stable.

The main objective of loopback test is to measure the latency time in LLLOGEMAC-IP and
Transceiver. MacRoundTimer is designed to capture round-trip latency time for transferring the
packet from Tx interface of LLLOGEMAC-IP to Rx interface of LLLOGEMAC-IP, as shown in
Figure 2-1. The user can use Niosll command shell to set the packet length and the number of
packets which is generated by PacketGen. The number of packets is set to run the test many
times to get many results, controlled by CPU firmware. After that, CPU calculates to find the
minimum value, the maximum value, and the average value of round-trip time for displaying on
the console. More details of each module are described as follows.

30-Jun-23 Page 3

dg_ll110gemacip_refdesign_intel.doc m

2.1 10GBASE-R PMA

Intel transceiver can be configured to be 10GBASE-R PMA. The user interface is 32-bit data
running at 322.265625 MHz. In the demo, the user can run the demo by using internal
loopback inside the transceiver or external loopback via SFP+ loopback module.

The configuration of 10GBASE-R PMA by using Transceiver Native PHY wizard is as follows.
Transceiver configuration rules : PCS Direct

e Data rate : 10312.5 Mbps
e PCS Direct interface width 32
e Enable rx_seriallpbken port (to run internal loopback mode)

Transmitter
PCS PMA

P Serializer ——— P 3T

Receiver
PCS PMA

< Deserializer |4 (DR —=_ 1]

Figure 2-2 Serial loopback mode in Intel transceiver

Figure 2-2 shows the definition for the internal loopback path from Transceiver PHY user
guide which can be downloaded from following link.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/ug_
arrial0_xcvr_phy.pdf

2.2 LL10GEMAC-IP

The IP core by DesignGateway implements low-latency EMAC and PCS logic for 10Gb
Ethernet (BASE-R) standard. The user interface is 32-bit Avalon-stream bus. Please see
more details from LLI0GEMAC-IP datasheet on our website.
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip _data sheet intel.pdf

30-Jun-23 Page 4

https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_intel.pdf

dg_ll110gemacip_refdesign_intel.doc m

2.3 PacketGen

PacketGen

|

MacTxSOP
UserStart - - >
| TxBusy | rTxBusy MacTxValid
Reg > > MacTXEOP .
o ehont Control MacTxEmpty | Avalon-ST
UserLen Length | TXxLen rix.en n= MacTxReady Interface
> Reg Counter -t
> MacTxData
> Busy Tx Data v
UserBusy Reg =l Generator
- TxClk
UserRxLen RxClk
Zero
- -
Padding
yrLastRxTrn
» MacRxValid
Rx Data |/RxLenCnt | RxLength |
‘rExpPa it Generator | T Counter | _ MacRxEmpty
UserVerFalil - -
< Compare MiacRxData
-t Rx
Avalon-ST
rRxFinish End < Interface
Detect < ViacRxEOP
LjserRxErmr Error f
B Detect | MacRxEmor

Figure 2-3 PacketGen module

PacketGen module is the test logic to send and receive one packet with LLLOGEMAC-IP
through Avalon-Stream interface. This module runs in two clock domains - TxCIk for transmit
operation and RxCIk for receive operation. As shown in Figure 2-3, the logic is split to two
groups, i.e., Packet generator in the top side for generating one packet to Avalon-ST and
Packet verification in the bottom side for verifying one packet from Avalon-ST.

After receiving start pulse from the user (UserStart), this module generates one test packet
which has packet length equal to packet size parameter (UserLen). The start signal of the
packet (MacTxSOP) is asserted when the first data is transmitted. Test pattern is 16-bit
incremental data, created by the transmit counter (rTxLenCnt). When packet size is not
aligned to 32-bit, MacTxEmpty of the last data in the packet is varied from 00b to 11b,
depending on the number of unused bytes. At the same time, MacTXEOP is asserted to ‘1’ to
finish the transmit operation. TxBusy is asserted to ‘1’ after UserStart is asserted. While
TxBusy changes from ‘1’ to ‘0’ after finishing transmit operation (MacTXEOP="1"). Tx Length
Counter and Tx Data Generator are paused when MacTxReady is de-asserted to ‘0'.
Transmitted data valid (MacTxValid) is always asserted to ‘1’ to send the packet via Tx
Avalon-ST until the end of the transmitted packet.

UserBusy is designed for user to monitor PacketGen operation. When User asserts
UserStart, UserBusy is asserted to ‘1’. UserBusy is de-asserted to ‘O’ after finishing the
loopback operation by receiving end of the packet (MacRxEOP="1").

30-Jun-23 Page 5

dg_ll110gemacip_refdesign_intel.doc m

On the other hand, when the packet is loop-back to Rx Avalon-ST, the packet is verified. The
received data valid (MacRxValid) is applied to count the numbers of received data
(rRxLenCnt). The counter output can be fed to the pattern generator (Rx Data Generator) to
create the expected pattern for data verification. Zero-padding module is run when the
packet size is less than 60 bytes. After the current receive counter is equal to the packet size,
set by user, rLastRxTrn will be asserted to ‘1’ to fill the expected pattern with zero value until
the 60-byte packet length is reached. Fail flag (UserVerFail) is asserted to ‘1’ if the received
data is not equal to the expected pattern. When the end of packet (MacRxXEOP) is asserted
to ‘1’, Finish flag (rRxFinish) is asserted to ‘1’ for de-asserting UserBusy to ‘0’. Finish flag is
auto-cleared after UserBusy is de-asserted to ‘0’. When the end of packet is received,
MacRxError is monitored. UserRxError is asserted to ‘1’ when MacRxError is equal to ‘1’.

30-Jun-23 Page 6

dg_l110gemacip_refdesign_intel.doc m

2.4 Timer

MacTxValid/
MacTxReady PMATxData
Intel
Transceiver
MacTxClk MacTxClk (PMA for
MacRxClk MacRxClk 1OGBASE-R)
MacRxValid PMARxData
O
Stop | | Start
MacRoundTimer

Figure 2-4 Timer in the reference design

A timer named MacRoundTimer in the test system is created to count the round-trip latency
time measured from Tx data path LLLOGEMAC-IP to Rx data path of LLLOGEMAC-IP
(Round-trip latency). Therefore, latency time is the sum of the latency inside LLLOGEMAC
and Intel transceiver. MacRoundTimer are controlled by Enable flag. In the test, one packet is
transferred in the system. Enable flag is asserted to ‘1’ when the first data is found at the input
of the measured module. It is de-asserted to ‘0’ when the first data is found at the output of the
measured module. The timer latches the value to return to CPU after the test operation is
finished. The timer and Enable flag are reset when the user starts the new test loop. More
details of the timer are described as follows.

30-Jun-23 Page 7

dg_l110gemacip_refdesign_intel.doc m

3.TimerEn is de-asserted to ‘0’ after the 1%
data is detected on Rx Avalon-ST interface for
2-3 clock cycles on MacTxClk domain.

1. TimerEn is asserted to ‘1’ after the 1%
data is detected on Tx Avalon-ST interface.

MacTxClk —J u u u \-g
: .-1-,‘ | : :

MacTxSOP [T NS
ANE : : : :
MacTxValid | \ | : : | \
C ! : : : .
i A i . C) H
MacTxReady || ".,;,"' 5 ; ’! ; :\ . .
AN i |
TimerEn i ! {r;\} |:' > i @

\?:XZEiXN—4XN3XN_2?’X_N1:

2. RoundTimerCnt starts 4 RoundTimerCnt stops
counting when TimerEn="1". counting after TimerEn="0".

MacRxClk | E

MacRxValid R .

Figure 2-5 MacRoundTimer timing diagram

- = -

RoundTimerCnt[31:0]

-

(1) The first data on Tx Avalon-ST interface is detected when MacTxValid="1’, MacTxSOP="1’,

and MacTxReady="1". After that, TimerEn is asserted to ‘1’ to start the timer operation.

(2) When TimerEn="1’, the timer is incremented every clock cycle to count the latency time.
(3) TimerEn is de-asserted to ‘O’ when the first data on Rx Avalon-ST interface is detected,

monitored by MacRxValid='1’. This condition is run in MacRxClk domain but
MacRoundTimer is run in MacTxClk domain. Therefore, asynchronous logic is added to
forward Stop flag from MacRxClk to MacTxClk. Asynchronous logic is designed by adding
two Flip-Flops on MacTxClk domain. Therefore, the latency time measured by the timer is
increased about 2-3 clock cycles, depending on the phase shift from MacRxCIk to
MacTxClk. In the demo system, the timer value is subtracted by two in CPU firmware to
remove latency time from asynchronous logic by using minimum value.

(4) Timer stops running and holds the value. The user can read the timer to check round-trip

latency time.

30-Jun-23 Page 8

dg_l110gemacip_refdesign_intel.doc m

2.5 CPU and Peripherals

32-bit Avalon-MM is applied to be the bus interface for the CPU accessing the peripherals
such as Timer and JTAG UART. To control and monitor the test system, the control and status
signals are connected to register for CPU access as a peripheral through 32-bit Avalon-MM
bus. CPU assigns the different base address and the address range to each peripheral for
accessing one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. The base address and the range for accessing the test logic are defined in the CPU
system. So, the hardware logic must be designed to support Avalon-MM bus standard for
supporting CPU writing and reading. AvIi2Reg module is designed to connect the CPU system
as shown in Figure 2-6.

CpuClk | MacTxClk

[
| Register Control and
CPU Avalon-MM As}nc IfF < Statussagnalsl
(Niosll) [32 ’ AVIFeg < 732L.'" UserReg
I Timer
| -
| | AvI2Reg

Figure 2-6 CPU and peripherals hardware

AvI2Reg consists of AsyncAviReg and UserReg. AsyncAviReq is designed to convert the
Avalon-MM signals to be the simple register interface which has 32-bit data bus size (similar
to Avalon-MM data bus size). Also, AsyncAvilReg includes asynchronous logic to support
clock crossing between CpuClk domain and MacTxClk domain.

UserReg includes the register file of the parameters and the status signals to control and

monitor PacketGen and the Timer. More details of AsyncAviReg and UserReg are described
as follows.

30-Jun-23 Page 9

dg_ll110gemacip_refdesign_intel.doc m

2.5.1 AsyncAviReg

AsyncAviReg
SAvlAddr Shared Register Address I/F RegAddr -
SAviWaitReq Flow Control
SAvIWrite [T
SAvIWriteData Data
————— | Conlrol P> Register RegWr*
SAviByteEnable (Write) Write I/F
R -}
SAvIRead
W
SAviReadData Data —o—P)
- Control Reg'ﬁt?r RegRd*
SAvIReadDataValid| (Read) |«——— ReadlF | q—
-

Figure 2-7 AsyncAxiReq Interface

The signal on Avalon-MM bus interface can be split into three groups, i.e., Write channel (blue
color), Read channel (red color), and Shared control channel (black color). More details of
Avalon-MM interface specification are described in following document.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_av
alon_spec.pdf

According to Avalon-MM specification, one command (write or read) can be operated at a
time. The logics inside AsyncAviReg are split into three groups, i.e., Write control logic, Read
control logic, and Flow control logic. Flow control logic controls SAvIWaitReq to hold the next
request from Avalon-MM interface if the current request does not finish. Write control and
Write data I/F of Avalon-MM bus are latched and transferred to be Write register interface with
clock-crossing registers. Similarly, Read control I/F are latched and transferred to be Read
register interface with clock-crossing registers. After that, the returned data from Register
Read I/F is transferred to Avalon-MM bus by using clock-crossing registers. Address I/F of
Avalon-MM is latched and transferred to Address register interface as well.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-8

30-Jun-23 Page 10

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

dg_l110gemacip_refdesign_intel.doc M

During read opreation, RegAddr holds the ‘

same value until RegRdValid is asserted to "1".

™,
™,
>,

Clk Mm + : Output signal
! ™ 1 ' ! ¢ - Input signal

RegAddr[13:0] [A01{ | A gg ix
RegWrData[31:0]) woa) >
[[23
RegWrByteEn[3:0]) BEolY !

RegWrEn || —
RegRdReq | / |

RegRdValid

RegRdData[31:0]

1. RegWrEn is asserted to “17,
synchronous with RegAddr, RegWrData,
and RegWrByteEn for writing register

/ 3. RegRdValid is asserted to "1’
synchronous with RegRdData
to return valid register data

2. RegRdReq s asserted to *17,
synchronous with RegAddr to
send read register request

Figure 2-8 Reqister interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is
asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid respectively.

2) To read register, AsyncAvlReg asserts RegRdReq to '1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1. So, the address
can be used for selecting the returned data by using multiple layers of multiplexer.

3) Theread data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1°.
After that, AsyncAviReg forwards the read data to SAvIRead interface.

30-Jun-23 Page 11

dg_l110gemacip_refdesign_intel.doc M

2.5.2 UserReg

UserReg
RegAddr Address
—p.
Decoder
[Ox0000- | Register File
>
RegWr* | OxQOFF_] (Write) Control and
— > | gStatus signals |
e 0% 1000
AviReg X - | "
| Ox1FFF_|
Register Mux
4’
Read i
RegRd* () Timer
S —

Figure 2-9 UserReq block diagram

The address range to map to UserReg is split into two areas, as shown in Figure 2-9

1) 0x0000 — OxOOFF: mapped to set control signals of the PacketGen module. This area is
write-access only.

2) 0x1000 — Ox10FF: mapped to read status signals of PacketGen module and returned
value of the Timer. This area is read-access only.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32-bit size, so write byte enable (RegWrByteEn) is not used. To

set the parameters in the hardware, the CPU must use 32-bit pointer to force 32-bit valid
value of the write data.

To read register, one multiplexer is designed. Register Mux is the data multiplexer to select
the read data for returning to CPU, so the latency of read data is equal to one clock cycle.
RegRdValid is created by RegRdReq with asserting one D Flip-flop.

More details of the address mapping within UserReg module are shown in Table 2-1

30-Jun-23 Page 12

dg_ll110gemacip_refdesign_intel.doc

Table 2-1 Regqgister map Definition

Address Register Name Description
Wr/Rd (Label in the lI10gemaclptest.c”)
BA+0x0000 — BA+0x00FF: Control Signal of PacketGen (Write-access only)
BA+0x0000 | User Command Reg [0]: Start test operation. Set ‘1’ to start the test.
(USRCMD_REG) This signal is auto-cleared after the system begins the operation.
BA+0x0004 | User Length Reg [15:0]: Tx Packet size in byte unit. Valid from 5-9014 byte. When the
(USRLEN_REG) packet size is less than 60-byte, zero-padding is filled by EMAC.
BA+0x0008 EMAC Reset Reg [0]: Active-high reset signal for LLLOGMAC IP.
(EMACRST_REGQG)
BA+0x000C | Loopback Reg [0]: Set loopback mode.
(LPBACK_REG) 0: External (Loopback by cqnnecting SI_:P+ loopback module)
1: Internal (Loopback by using Transceiver)
BA+0x1000 — BA+0x1FFF: Status signals (Read-access only)
BA+0x1000 | User Status Reg [0]: Asserted when PacketGen is processed.
(USRSTS_REG) Assert to ‘1’ after USRCMD_REG[0] is set to ‘1.
De-assert to ‘0’ after PacketGen finishes Tx and Rx transmission.
[1]: Ethernet Linkup status, mapped to Linkup signal of
LL10GEMAC-IP.
[2]: Packet verification fail.
‘0’: No error is found. ‘1’: Received data is not correct.
[3]: Asserted when LL10GEMAC-IP detects the error by asserting
MacRxError. De-asserted to ‘0’ when the new operation is started by
setting USRCMD_REG[0]="1".
BA+0x1004 | Receive Length Reg [15:0]: Receive packet size in byte unit. This value is equal to
(RXLEN_REG) USRLEN_REG when USRLEN_REG is not less than 60-byte.
Otherwise, RXLEN_REG is equal to 60-byte because zero-padding is
included.
BA+0x1020 | Timer Reg [31:0]: Read value of MacRoundTimer[31:0] to check round-trip latency
(TIMER_REG) time of LLIOGEMAC-IP with Transceiver.
BA+0x1800 | IPVersion Reg [31:0]: IPVersion output from LLLOGEMAC-IP
(IPVER_REG)
30-Jun-23 Page 13

dg_l110gemacip_refdesign_intel.doc

3 CPU Firmware Sequence

After FPGA boot-up, LLI0OGEMAC-IP is initialized by setting loopback mode to be External
mode or Internal mode. To run External loopback mode, it needs to connect SFP+ loopback
module on the board. Otherwise, it does not need to use the loopback module. After that,
reset signal is asserted and the IP starts initialization process. During initialization process,
Linkup status from Ethernet MAC (USRSTS_REG[1]) is polling. The CPU waits until
LL10GEMAC-IP is linked-up. Finally, main menu is displayed on the console, as shown in

Figure 3-1.

Input Loopback Mode

Start Reset
Reset Complete

Ethernet Link Up
--- Loopback Test menu ---

[@] : Change Loopback Mode
[1] : LL1@GEMAC Loopback Test

+++ LL1OGEMAC Loopback Test [IPVer =

: [@]External [1]Internal => ©

2.0] +++

Figure 3-1 Main Menu

There are two menus — Change loopback mode and Run loopback test. The first menu is
designed to switch the loopback mode to external or internal mode. The details to run

loopback test are described as follows.

30-Jun-23

Page 14

dg_ll110gemacip_refdesign_intel.doc m

3.1 Run Loopback test

The user inputs packet length and the number of packets to start the loopback test. After that,

the test data is generated for sending to LLIOGEMAC-IP. After the packet is loop-back

returned to the transceiver by internal or external mode, the received packet from
LL10GEMAC-IP is verified and latency time is measured. The details of the test sequence are
described as follows.

1) Receive packet length transfer (byte) size and the number of packets from the user. The
operation is cancelled when the input is invalid.

2) Set packet length to USRLEN_REG.

3) Start the test operation by setting USRCMD_REGJ[0]="1".

4) The CPU waits until the operation is finished by monitoring busy flag (USRSTS_REG[0])
which changes from ‘1’ to ‘0’.

5) Check error flag in the test (USRSTS_REG[3:2]). If some errors are found, error message
is displayed.

6) Check receive length (RXLEN_REG) and display the error message if the read value is not
equal to the expected length. Typically, the expected length is equal to the packet length,
set by the user. The expected length is equal to 60 bytes if the packet length is less than 60
bytes which is the value including zero-padding.

7) Decrease total number of packets. If remained value is not equal to O, repeat step 3) — 6).
Before going to step 3), CPU calculates the minimum value, the maximum value, and the
average value of round-trip latency time.

8) CPU displays the result - the minimum time, the maximum time, and the average time on
the console.

30-Jun-23 Page 15

DG

dg_ll110gemacip_refdesign_intel.doc
3.2 Function list in User application

This topic describes the function list to run LLLOGEMAC-IP loopback test.

void init_emac(void)
Parameters | None
Return value | None
Description Receive loopback mode from the user and set to LPBACK_REG. Next,

start reset operation by asserting and de-asserting reset signal,
controlled by EMACRST_REG. Finally, calling wait_ethlink function to
wait until the ethernet link up.

int loopback test(void)

Parameters

None

Return value

0: The operation is successful
-1: Receive invalid input or error is found

Description

Run Loopback test following description in topic 3.1

void show res

ult(unsigned int av_ltc, unsigned int min_ltc, unsigned int max_Itc)

Parameters

av_ltc: average latency time in clock cycle unit
min_ltc: minimum latency time in clock cycle unit
max_ltc: maximum latency time in clock cycle unit

Return value

None

Description

Convert the unit from clock cycle to be ns unit and display the results,
i.e., the minimum latency time, the maximum latency time, and the
average latency time.

void show_vererr(void)

Parameters | None
Return value | None
Description Read USRSTS REG[2] (verify failed) and USRSTS_REG[3] (error

status from LL1I0GEMAC-IP). Display the error message following the
error flag.

void wait_ethlink(void)

Parameters | None
Return value | None
Description Read link-up status (USRSTS_REG[1]) and wait until the connection is
linked up.
30-Jun-23 Page 16

dg_l110gemacip_refdesign_intel.doc

4 Revision History

Revision Date Description
1.0 26-Mar-21 Initial version release
30-Jun-23 Page 17

