dg_toel0gllip_refdesign_intel.doc m

TOE10GLL-IP reference design

L INTOAUCTION .. 1
2 HaAIOWAIE OVEIVIEW.....uii i eeeeeeeeiite et ettt e e e e e e e e e eet e e e e e e e e e eeetbaa e e e e eeeeeeeessnnneeeeeeeeeeennes 3
2.1 Intel Transceiver (PMA for LO0GBASE-R)ccoiiiiiiiiiiii e e e e e eeanns 4
FZ R 0 1] 1 4
/22 N O 1 =3t 0] 4
2.4 CPU and PeriPReralSuuuiiiiiiiiiiiiiiiiiiiiiiii e 5
2t R AN V] ToF AN | =T o USSP 6
2.4.2 USEBIREQ ...ttt e e e e enrrn 8

1225 T 10 0T 17

3 CPU FIrMWAIE (FPGA) ...ttt seeennnnnes 18
TNt R B 1S o] = AV o = =T =3 = £ SRPPPPN 19
3.2 RESEIPAIAMELEIS ... ittt ettt e e e e et e e e e e e e e et e e e e an e e e e e e eennnn 19
TR TS 1Y T o F= L= B (=] 20
3.4 RECEIVE TatA TSciiieiiiiiiii et e e e e e e et e e e e e e e e e eeaanaa e e e e e eeennne 21

G T V1| o [0 o [(=] O EPPPPPPN 22
3.6 Function list in User appliCATIONuuuuuimmiiiiiiiiiiiiiiiiiiii e 23

I [S AT 11T 7= L (=3 I = 26
4.1 “tcpdatatest” for half duplex teSt........coov i 26
4.2 “tcp_client_txrx_40G” for full duplex test...........oooiiiiiiiiii e 28

I Y][0 g T o 11100 o PR 30

30-Jun-23

dg_toel0gllip_refdesign_intel.doc m

TOE10GLL-IP reference design

Revl.1 30-Jun-23

1 Introduction

General solution Ultra-Low latency solution

(CPU Less System)

. Pure HW

(" cPusystem)

| Application

CPU

IPcore

Intel IP
(Free)

10GbE PMA

Physical
\ / \ J

Figure 1-1 Low-latency solution

The general solution for implementing TCP/IP data processor with FPGA is mostly designed by
using CPU system for running TCP/IP stack. While the lower layers - link layer and physical layer
are implemented by Intel IP core, Low Latency Ethernet 10G MAC, as shown on the left side of
Figure 1-1. Though this solution is flexible to design application on CPU, the result shows much
latency time for processing both TCP/IP stack and the application.

To achieve the lowest latency solution, the design on the right side of Figure 1-1 is designed, the
full hardware logic system for processing TCP/IP packet. This solution is fit with the time-sensitive
application that needs to implement the user logic by the hardware logic for transferring TCP data
with TOE10GLL-IP. TOE10GLL-IP designs TCP/IP stack with ultra-low latency. Also, it is
recommended to connect with the low latency 10G Ethernet MAC IP (LLLOGEMACIP) to achieve
the lowest latency system. The lowest layer of hardware, PMA layer, is provided by Intel as a free
PMA IP.

30-Jun-23 Page 1

dg_toel0gllip_refdesign_intel.doc m

——————— — —— — ——— ———— —— — —— — — — —

/ TOE10GLLIP Demo . TxLatency
I Time

— \
|

10 Gb TestPC or
Ethernet FPGA

32-bit
Avalon-ST

————————— —————

I I
Rx Latency
\ | Time | /

e e S . S A S AL S S S L S S S S S S S S e S —

Figure 1-2 Test logic for TOE10GLL-IP

The simple test logic is designed to show TCP/IP stack implementation with achieving low latency
time as shown in Figure 1-2. User logic can be separated into two parts: UserDataGen and
UserDataVer. UserDataGen generates the 32-bit incremental data pattern and transfers to
TOE10GLL-IP to build TCP packet. Next, TCP packet is forwarded to LLLOGEMAC-IP and Intel
10GbE PMA (BASE-R). The target device can be designed by TestPC or another FPGA which
runs the same hardware but verifies the received data by UserDataVer. When using TestPC, the
test software is run on TestPC for data verification. Besides, the latency time of TOE10GLL-IP
when transmitting data is measured by using the timer.

On the other hand, UserDataVer verifies the received TCP packet from TOE10GLL-IP, sent via
10G Ethernet from Test software on PC or another FPGA board. Similar to Tx path, the latency
time of TOE10GLL-IP when receiving data is measured by the timer. The latency time for both
directions is measured from start-of-frame to start-of-frame.

CPU system is included for user to interface with hardware logic via JTAG UART. Network
parameters of the test system can be set by the user from the Niosll command shell as well as the
parameters of the test logic such as total transfer length and packet size. Also, the test results,
latency time and the progress of test operation, are returned to CPU and then displayed on the
Niosll command shell. More details of the demo are described as follows.

30-Jun-23 Page 2

dg_toel0gllip_refdesign_intel.doc M

2 Hardware overview

: | TOE10GLLTest
CPU JTAG | | g TAGUART]
(NioslI) UART |
|
Avalon-MM :
|
| Ed == f—
Avi2Reg I “tcpdatatest.exe”/
Async CpuClk (100 MHz) : ”t::P_cIlenE{xrx_d-UG.exe
AViReg MacTxClk (322 MHz) LLTenGEMACPHY r l . —
1
e 192.168.7.25
| Register | ‘U
————— Intel 10Gb
i Ethemet
0w . Transceiver
| DataGen | _32-bitdata (PMA for or
————— 4 10GBASE-R)
Ll - - " —— N _ _ _ EEaaa TUBASEN \
T Tear 1
F=0s6i 1) sobivaata \, | TOE10GLLTest
|_DataVer | \
ﬁ FPGA
UserReg MacRxClk (322 MHz)
Application Transport and Data Link Physical 192.168.7.25
Layer Network Layer Layer Layer
192.168.7.42

Figure 2-1 Demo Block Diagram

The test system includes CPU for the ease of user interface and flexibility of test environment.
User can input the test parameters such as network parameters and transfer size. Also, the
current status of the test system such as current transfer size is displayed on Niosll command
shell for monitoring the test progress. To connect the hardware with CPU system, Avalon-MM bus
must be implemented. Avl2Reg is the interface module to convert Avalon-MM interface to be the
user interface of TOE10GLL-IP module. Avi2Reg includes AsyncAviReg which is designed to be
asynchronous module between CpuClk which is the independent clock for running the CPU
system and MacTxClk which is the clock output, generated by Intel transceiver module.

The user interface of TOE10GLL-IP connects to UserReg within Avi2Reg module to control and
monitor the TOE10GLL-IP. Also, UserReg consists of UserDataGen module which is the 32-bit
test data generator and UserDataVer module which verifies the data, extracted from received
packet. Register files of UserReg are written and read by CPU firmware through Avalon-MM bus.
Another side of TOE10GLL-IP is connected to 10G Ethernet MAC controller (LLLOGEMAC-IP) by
using 32-bit Avalon stream interface (Avalon-ST). LLILOGEMAC-IP implements the Ethernet MAC
layer and PCS layer with less latency time. Tx and Rx interface of Avalon-ST are run in the
different clock domains: MacTxClk and MacRxClk respectively.

LL10GEMAC-IP provided by Design Gateway requires to run with Intel Transceiver which is
configured to be PMA module for 10GBASE-R interface.

30-Jun-23 Page 3

dg_toel0gllip_refdesign_intel.doc m

Another side of 10Gb Ethernet is the target device, Test PC or another FPGA board. When using
TestPC, the test application - tcpdatatest and tcp_client_txrx_40G must be run for transferring
TCP data. Otherwise, another FPGA board is applied by implementing TOE10GLL-IP to transfer
data in the different mode to show the best performance.

2.1

2.2

2.3

Intel Transceiver (PMA for 10GBASE-R)

PMA IP core for 10Gb Ethernet (BASE-R) can be generated by using Quartus IP catalog. In
FPGA Transceivers Wizard, the user uses the following settings.

e Transceiver configuration rules : PCS Direct

e Data rate : 10312.5 Mbps

e PCS Direct interface width 32

More details are described in the following link.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/ug
arrialQ xcvr phy.pdf

LL1I0GEMAC

The IP core by Design Gateway implements low-latency EMAC and PCS logic for 10Gb
Ethernet (BASE-R) standard. The user interface is 32-bit Avalon-stream bus. Please see
more details from LLIOGEMAC datasheet on our website.
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip _data sheet intel.pdf

TOE10GLL

TOEL10GLL-IP is the IP core provided by Design Gateway to implement the TCP/IP stack and
offload engine for the low latency solution. User interface has two signal groups, i.e., control
signals and data signals. More details are described in datasheet.
https://dgway.com/products/IP/Lowlatency-IP/dg_toelOgllip_data sheet_intel.pdf

30-Jun-23 Page 4

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/ug_arria10_xcvr_phy.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/ug_arria10_xcvr_phy.pdf
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_intel.pdf
https://dgway.com/products/IP/Lowlatency-IP/dg_toe10gllip_data_sheet_intel.pdf

dg_toel0gllip_refdesign_intel.doc M

2.4 CPU and Peripherals

32-bit Avalon-MM is applied to be the bus interface for the CPU accessing the peripherals
such as Timer and JTAG UART. To control and monitor the test system, the control and status
signals are connected to register for CPU access as a peripheral through 32-bit Avalon-MM
bus. CPU assigns the different base address and the address range to each peripheral for
accessing one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. The base address and the range for accessing the test logic are defined in the CPU
system. Therefore, the hardware logic must be designed to support Avalon-MM bus standard
for CPU write access and read access. Avl2Reg module is designed to connect the CPU
system as shown in Figure 2-2.

CpuClk | MacTxClk

|
| Control
| ' Interface)
| Register

Avalon-MM Astc I/F Tx Data

CPU |€—< UserRe
32 Avlreg 47{5’ g I InterfaceI

| MacRx Clk
| Rx Data
| - Inerface >
| Avi2Reg
I

|
Figure 2-2 Avl2Reqg block diagram

AvI2Reg consists of AsyncAviReg and UserReg. AsyncAviReg is designed to convert the
Avalon-MM signals to be the simple register interface which has 32-bit data bus size (similar
to Avalon-MM data bus size). Besides, AsyncAvReg includes asynchronous logic to support
clock crossing between CpuClk domain and MacTxClk domain. Tx data interface and Rx data
interface of TOE1OGLL-IP are run in different clock domain, MacTxClk and MacRxCIk.
Therefore, UserReg module consists of the logics which run in two clock domains.

UserReg includes the register file of the parameters and the status signals of test logics,

including TOE10GLL-IP. Both data interface and control interface of TOE10GLL-IP are
connected to UserReg. More details of AsyncAviIReg and UserReg are described as follows.

30-Jun-23 Page 5

dg_toel0gllip_refdesign_intel.doc m

2.4.1 AsyncAviReg

AsyncAviReg
SAvlAddr Shared Register Address I/F RegAddr -
SAviWaitReq Flow Control
SAvIWrite [T
SAvIWriteData Data
————— | Conlrol P> Register RegWr*
SAviByteEnable (Write) Write I/F
R -}
SAvIRead
W
SAviReadData Data —o—P)
- Control Reg'ﬁt?r RegRd*
SAvIReadDataValid| (Read) |«——— ReadlF | q—
-

Figure 2-3 AsyncAvIReq Interface

The signal on Avalon-MM bus interface can be split into three groups, i.e., Write channel (blue
color), Read channel (red color), and Shared control channel (black color). More details of
Avalon-MM interface specification are described in following document.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_av
alon_spec.pdf

According to Avalon-MM specification, one command (write or read) can be operated at a
time. The logics inside AsyncAviReg are split into three groups, i.e., Write control logic, Read
control logic, and Flow control logic. Flow control logic controls SAvIWaitReq to hold the next
request from Avalon-MM interface if the current request does not finish. Write control and
Write data I/F of Avalon-MM bus are latched and transferred to be Write register interface with
clock-crossing registers. Similarly, Read control I/F are latched and transferred to be Read
register interface with clock-crossing registers. After that, the returned data from Register
Read I/F is transferred to Avalon-MM bus by using clock-crossing registers. Address I/F of
Avalon-MM is latched and transferred to Address register interface as well.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-4.

30-Jun-23 Page 6

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

dg_toel0gllip_refdesign_intel.doc M

During read opreation, RegAddr holds the
same value untll RegRdValid is asserted to “1

4 - Qutput signal
¢ _ Input signal

Clk

E

RegAddr{13:0]) A0l) A1

RegWrData[31:0] Y woa)

YT WY WY Ty Wy
(e R T AT LAY ST B

Reg\WrByteEn[3:0]) BEO

RegWrEn ﬂ

RegRdReq

RegRdValid

RegRdData[31:0]

3. RegRdValid is asserted to ‘1
synchronous with RegRdData
to return valid register data

1. RegWrEn is asserted to *17
synchronous with RegAddr, RegWrData, /
and RegWrByteEn for writing register /

2. RegRdReq s asserted to *1
synchronous with RegAddr to
send read register request

Figure 2-4 Reqister interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is
asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to enable 4-byte data. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid respectively.

2) To read register, AsyncAviReg asserts RegRdReq to "1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave detects
RegRdReq asserted to start the read transaction. During read operation, the address
value (RegAddr) does not change until RegRdValid is asserted to ‘1’. Therefore, the
address can be used for selecting the returned data by using multiple levels of multiplexer.

3) Theread data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1°.
After that, AsyncAviReg forwards the read value to SAvIRead * interface.

30-Jun-23 Page 7

dg_toel0gllip_refdesign_intel.doc m

2.4.2 UserReg

4 - Reg Write
¢ - Reg Read
UserReg
Address LL10GMEAC
Decoder | __ _ _ _ _
RegAddr I~ 0x0000- " Reg File#0 ’ >
| 0x00FF | I (!ane_% i User
I"0x0100- | ["Reg Mux#0 | Control I/F
| oxotFF 1 _(Read) _
RegWr* 0x0200- I“I " Reg Mux#1 -
Asvnc | |_OxO3FF | _(Read) _
. Ihé I"0x0400- I™ Reg File#T
Vired | OxQ4FF | wite) ™ UserData
= — =Ll - g = TOE10GLL
| I 0x0500| [Reg Mux#Z | Gen P MacTxClk
. |_0xQ5FF_| _(Read) _ | User | | 77"
RegRd [0x0600~ | I™ Reg File#2 | Data IIF MacRxClk
<——— | OxO06FF | _@Irjel__: » Async | UserData Hacnx
Ox0700- 1 " Reg Mux#3 - DataVer Ver
|_x07FF ™1 _Read) _ | |

Figure 2-5 UserReq block diagram

The logic inside UserReg consists of three operations, i.e., Register interface (Address
decoder, RegFile, and RegMux), Data pattern generator (UserDataGen), and Data pattern
verification (UserDataVer and AsyncDataVer).

Register block decodes the address which is requested from AsyncAviReg and then selects
the active register for write or read transaction. UserDataGen block is designed to send 32-bit
test data to TOE10GLL-IP. UserDataVer block is designed to read and verify 32-bit data from
TOE10GLL-IP following Avalon-Stream interface standard. AsyncDataVer is asynchronous
circuit of UserDataVer which is run in MacRxClk domain to interface with other modules which
are run in MacTxCIlk domain and vice versa. More details of Register block, UserDataGen,
and UserDataVer are described as follows.

30-Jun-23 Page 8

dg_toel0gllip_refdesign_intel.doc

Register Block

DG

The address range assigned in UserReg is split into four areas for four hardware logics.
e (0x0000 — OXO1FF: TOE10GLL-IP

e 0x0200 — Ox03FF: LLI10OGEMAC-IP

e 0x0400 — OxXO5FF: UserDataGen

e 0x0600 — OxO7FF: UserDataVer

Address decoder decodes the upper bit of RegAddr for selecting the active hardware that is
TOE10GLL-IP, LLIOGEMAC-IP, UserDataGen, or UserDataVer. The register file inside
UserReg is 32-bit bus size, so write byte enable (RegWrByteEn) is ignored. The CPU must
use 32-bit pointer to place 32-bit valid value on the write data bus.

To read register, multi-level multiplexers (mux) select the data to return to CPU following the
address. The lower bit of RegAddr is applied to the mux in the submodule for selecting the
internal signals while the upper bit is applied to the mux in UserReg to select the result from
each submodule. Totally, the latency time of read data is equal to two clock cycles. Therefore,
RegRdValid is created by RegRdReq with asserting two D Flip-flops. More details of the
address mapping within UserReg module are shown in Table 2-1.

Table 2-1 Reqister map Definition

Address Register Name Description
Wr/Rd (Label in “toel0glitest.c”)
BA+0x0000 — BA+0x00FF: Input signals of TOE10GLL-IP (Write access only)
BA+0x0000 TOE_RST_REG [0]: Mapped to RstB of TOE10GLL-IP
BA+0x0004 TOE_DMM_REG [1:0]: Mapped to DstMacMode of TOE10GLL-IP
BA+0x0008 TOE_SML_REG [31:0]: Mapped to SrcMacAddr[31:0] of TOE10GLL-IP
BA+0x000C TOE_SMH_REG [15:0]: Mapped to SrcMacAddr[47:32] of TOE10GLL-IP
BA+0x0010 TOE_DMIL_REG [31:0]: Mapped to DstMacAddr[31:0] of TOE10GLL-IP
BA+0x0014 TOE_DMIH_REG [15:0]: Mapped to DstMacAddr[47:32] of TOE10GLL-IP
BA+0x0018 TOE_SIP_REG [31:0]: Mapped to SrclPAddr of TOE10GLL-IP
BA+0x001C TOE_DIP_REG [31:0]: Mapped to DstIPAddr of TOE10GLL-IP
BA+0x0020 TOE_TMO_REG [31:0]: Mapped to TimeOutSet of TOE10GLL-IP
BA+0x0040 TOE_CMD_REG [1:0]: Mapped to TCPCmd of TOE10GLL-IP. When this register is written,
TCPCmdValid of TOE10GLL-IP is asserted to ‘1’ for one cycle.
BA+0x0044 TOE_SPN_REG [15:0]: Mapped to TCPSrcPort[15:0] of TOE10GLL-IP
BA+0x0048 TOE_DPN_REG [15:0]: Mapped to TCPDstPort[15:0] of TOE10GLL-IP
BA+0x0100 — BA+0x01FF: Output signals of TOE10GLL-IP (Read access only)
BA+0x0100 TOE_VER_REG [31:0]: Mapped to IP version of TOE10GLL-IP
BA+0x0104 TOE_STS_REG [0]: Mapped to InitFinish of TOE10GLL-IP
[1]: Mapped to TCPConnOn of TOE10GLL-IP
[2]: TOE10GLL-IP Interrupt. Asserted to ‘1’ when IPInt of TOE10GLL-IP is
asserted to ‘1’. This flag is cleared after TOE_INT_REG is read.
[20:16]: Mapped to IPState of TOE10GLL-IP
BA+0x0108 TOE_INT_REG [31:0]: Mapped to IntStatus of TOE10GLL-IP
BA+0x010C TOE_DMOL_REG [31:0]: Mapped to DstMacAddrOut[31:0] of TOE10GLL-IP
BA+0x0110 TOE_DMOH_REG [15:0]: Mapped to DstMacAddrOut[47:32] of TOE10GLL-IP
BA+0x0200 — BA+0x03FF: Output signals of LLIOGEMAC-IP (Read access only)
BA+0x0200 EMAC_VER_REG [31:0]: Mapped to IP version of DG LL10GEMAC-IP
BA+0x0204 EMAC_STS_REG [0]: Mapped to Linkup of LLLOGEMAC-IP
30-Jun-23 Page 9

dg_toel0gllip_refdesign_intel.doc

DG

Address Register Name Description
Wr/Rd (Label in “toel0glitest.c”)
BA+0x0400 — BA+0x04FF: Input signals of UserDataGen (Write access only)
BA+0x0400 | USRTX_CMD_REG [0]: Start flag to generate test data by UserDataGen. Set ‘1’ to start sending data.
This flag is auto-cleared after running the operation.
[1]: Set ‘1’ to clear USRTX_LENL/H_REG and USRTX_TMR_REG.
BA+0x0404 | USRTX_PKL_REG [10:0]: Packet length in byte unit for assigning TCPTxPkLen, input of
TOEL10GLL-IP. The best performance is achieved when this value is aligned to
4-byte unit (bit[1:0]=00b).
BA+0x0408 | USRTX PSH_REG [0]: PSH flag for assigning TCPTxPSH, input of TOE10GLL-IP
BA+0x040C | USRTX_TDL_REG [31:0]: Bit[31:0] of total size in byte unit to generate test data by UserDataGen.
The value is cleared by USRTX_CMD_REGJ1].
BA+0x0410 | USRTX_TDH_REG [15:0]: Bit[47:32] of total size in byte unit to generate test data by UserDataGen.
The value is cleared by USRTX_CMD_REG[1].
BA+0x0500 — BA+0x05FF: Output signals of UserDataGen (Read access only)
BA+0x0500 | USRTX_ STS_REG [0]: Busy signal of UserDataGen (‘0’-ldle, ‘1’-Data is transmitting)
BA+0x0504 | USRTX_TMR_REG Timer value which shows latency time in Tx interface of TOE10GLL-IP
[15:0]: Tx latency time of TOE10GLL-IP in clock cycle unit
The value is cleared by USRTX_CMD_REG[1].
BA+0x0508 | USRTX_LENL_REG [31:0]: Bit[31:0] of complete transmit size in byte unit which is calculated by the
sum of TCPTxCplLen, output from TOE10GLL-IP.
The value is cleared by USRTX_CMD_REG[1].
BA+0x050C | USRTX_LENH_REG [15:0]: Bit[47:32] of complete transmit size in byte unit which is calculated by the
sum of TCPTxCplLen, output from TOE10GLL-IP.
The value is cleared by USRTX_CMD_REG[1].
BA+0x0600 — BA+0x06FF: Input signals of UserDataVer (Write access only)
BA+0x0600 | USRRX_CMD_REG [0]: Enable data verification of UserDataVer
(‘0’: Disable data verification, ‘1’: Enable data verification)
[1]: Set ‘1’ to clear USRRX_LENL/H_REG and USRRX_TMR_REG are reset.
BA+0x0700 — BA+0x07FF: Output signals of UserDataVer (Read access only)
BA+0x0700 | USRRX_STS_REG [0]: Verify fail (‘0’-No error, ‘1’-Received data is incorrect)
[1]: Receive error interrupt. Asserted to ‘1’ when TCPRxError from
TOE1O0GLL-IP shows error status. This flag can be cleared after
USRRX_ERR_REG is read.
BA+0x0704 | USRRX TMR_REG Timer value which shows latency time in Rx interface of TOE10GLL-IP
[15:0]: Rx Latency time of TOE10GLL-IP in clock cycle unit.
The value is cleared by USRRX_CMD_REG[1].
BA+0x0708 | USRRX_ERR_REG [7:0]: Latch signal of TCPRxError, output of TOE10GLL-IP. The value does not
change after detecting error. The value is reset after this register is read by CPU.
BA+0x0720 | USRRX_LENL_REG [31:0]: Bit[31:0] of current receive data size in byte unit which is counted when
the packet received from TOE10GLL-IP is valid.
The value is cleared by USRRX_CMD_REG[1].
BA+0x0724 | USRRX_LENH_REG [15:0]: Bit[47:32] of current receive data size in byte unit which is counted when
the packet received from TOE10GLL-IP is valid.
The value is cleared by USRRX_CMD_REG][1].
BA+0x0728 | USRRX_FAILPOSL_REG [31:0]: Bit[31:0] of the first position in byte unit that data verification detects
failure. The value is cleared by USRRX_CMD_REG[1].
BA+0x072C | USRRX_FAILPOSH_REG [15:0]: Bit[47:32] of the first position in byte unit that data verification detects
failure. The value is cleared by USRRX_CMD_REG[1].
BA+0x0730 | USRRX_EXPPAT_REG [31:0]: Expected data that IP should receive when data verification is failed.
BA+0x0734 | USRRX_RDPAT_REG [31:0]: Received data which is an incorrect data when data verification is failed.
30-Jun-23 Page 10

dg_toel0gllip_refdesign_intel.doc

User Data Generator

UserDataGen receives the parameters for generating test pattern to TOE10GLL-IP and then
start generating the test data by using 32-bit incremental pattern, starting from zero value.
Total data size and packet size are set via Register interface. Busy signal is asserted to ‘1’
when the module starts the operation. It is de-asserted to ‘0’ when the module finishes the
operation. Therefore, Busy is monitored to wait until the operation completes.

_____________G_______ UserDataGen
TmBusy S-R cm
- L [Parameter
I S FF Rje4 ==0 |
|TrnSlart o | En | TCPTxPSH o
F LN T -
1 PSHFlagSet
I - | Reg) |
. PacketSizeSef[10:0] > rPgcketSizelat[10:0]
| Cal TCPTxPkLen[100]
I P Min |
I rRemTotDataCnt[4[7:0] | Cal |wg |
| TotDatalenSet[47:0] Rem TCPTxValid
| P Len i >
| Y 4 |
rPacStart
| Gen ——®Scp = rRemPk Gen | | TCPTxReady
. PacStart . p Pac DataCnt Pac I TCPTXEOP
- 001 ™ X

| - ——p R) Count [10:0] End I -
| 2) |
| Control J |
| o TestPatt | rBytePattCnt zi':'ﬂ TCPTxDatel31-0)

L - F— I
| Count [33:0] |

Figure 2-6 UserDataGen block

TOE10GLL
IP

As shown in Parameter block (1), there are three parameters, input from Register interface, to
set UserDataGen module.
a. PSHFlagSet: Parameter assigned to TCPTxPSH of TOE10GLL-IP. The value does not
change until the test operation is finished. Therefore, all packets in the test use the same
TCPTxPSH value though TOE10GLL-IP supports to set TCPTXPSH for each transmitted
packet independently.
b. PacketSizeSet: Parameter assigned to TCPTxPkLen of TOE1O0GLL-IP. Similar to
TCPTxPSH, TCPTxPkLen is set by the same value for every packet until finishing the
operation, except the last packet. The last packet of the test operation is assigned by the
remaining transfer length which is less than or equal to TCPTxPkLen.
c. TotDataLenSet: Total size for generating test data in byte unit. If this value is more than
packet size (PacketSizeSet), many packets are generated by UserDataGen to
TOE10GLL-IP until total number of transmitted data is equal to TotDatalLenSet.

30-Jun-23

Page 11

dg_toel0gllip_refdesign_intel.doc m

From above specification, Reg module loads and latches PSHFlagSet and PacketSizeSet
when test operation begins (TrnStart is asserted to ‘1"). TCPTXPSH is the direct output from
Reg module while TCPTxPkLen must be calculated by finding the minimum value (CalMin)
between the packet size set by the user (rPacketSizeLat) or the remaining data size
(rRemTotDataCnt). The remaining data size is designed by using calculating unit,
CalRemLen, which loads the start value from TotDataLenSet and then subtracts to the packet
size at the end of packet. TrnBusy is designed by S-R Flip flop which is set when test
operation begins and clear when remaining data size (rRemTotDataCnt) is equal to O.

Control block (2) shows the interface of data flow control signals, i.e., TCPTxValid,
TCPTxReady, and TCPTXEOP for transferring TCPTxData. To start generating each packet,
GenPacStart asserts a pulse of rPacStart which is asserted to ‘1’ by two conditions. First, the
test operation begins when TrnStart="1" for creating the first packet. Second, the previous
packet is completely transferred (TCPTXEOP="1") and there are remained data to transfer
(rRemTotDataCnt is not equal to 0) for creating the remained packet. After rPacStart is
asserted to ‘1’, TCPTxValid, created by S-R Flip Flop, is asserted to ‘1’ to start sending data to
TOE10GLL-IP until end of a packet (TCPTXEOP='1). During transferring data to
TOE10GLL-IP, it needs to use a down-counter, PacCount, to count the number of generated
data. At the first data, rRemPkDataCnt is equal to packet size (TCPTxPkLen) and then
decreased until it is less than 4-byte, the end of packet. At the same cycle that generates the
last data, TCPTXEOP is asserted to ‘1’. TCPTxReady is applied to confirm that the
transmitted data is received by TOE10GLL-IP completely. TCPTxReady is always asserted to
‘1’ during a packet transferring. It is de-asserted after sending end of packet.

Data block (3) is designed to generate 32-bit incremental data to TOE10GLL-IP. According to
TOE10GLL-IP specification, zero data must be filled as dummy byte to the last data of a
packet if the packet size is not aligned to 4-byte. Therefore, TCPTXEOP is applied to fill the
zero value when TCPTxPkLen[1:0] is not equal to 00b.

30-Jun-23 Page 12

dg_toel0gllip_refdesign_intel.doc m

User Data Verification

UserDataVer receives the data from TOE10GLL-IP and then verifies the value if verification
enable, VerifyEn, is set to ‘1’ by the user. The expected pattern is 32-bit incremental pattern.
The received packet from TOE10GLL-IP may have the error when the signal quality of
ethernet connection is bad condition to make the packet broken. The expected data for
verification after receiving the error packet must be reversed to the latest valid packet to
re-verify the new packet.

Note: When the received packet is error, TOE10GLL-IP starts the data recovery process.
After that, the same data packet is re-transmitted again.

| UserDataVer
(1)
\]f |
- ErrorDetect ‘
Lat o
No | ‘
oo e+ S

RxIntClIr RxDataEmor{7:0] ‘

- PRsRS Error
RxErrorint FF Detect " RxDataEOP‘
o4 PE“" . RxRataValid |
FF acket |-
rRxPacErmorDet |
/;"° D=w—- 2)DataCounter
RxCurTrnSize[47:0] il

RxErrorLat[7:0]

A

A

A

ExpPatt[31
RdPatt[31-

AAA

VerifyEn

I
En"-‘- ‘
. _Error ‘
e Lat -
TrSizeClr . rDataByteCni[47:0] out g - FF -t
o | 4&-oit | TOE10GLL
rDataBytelDK[47:0] Data < IP
Di _— Cal
B o counter pqq < Byte RxDataByteEn[S'O]‘
- Clr L -~
h \
il kS %Data\fenﬂcatlon |
- 43 0l Cal ‘
< RdFail CMP ExpData ‘
== rRxData[31:0] RxData[31-0]
En | FF [\
RdFailPos] A ‘

Figure 2-7 UserDataVer block

As shown in Figure 2-7, UserDataVer has three operations, i.e., Error detection to detect the
error from TOE10GLL-IP, Data counter to count total number of valid data, and Data
verification to verify the received data.

Error detect block (1) reads the error output from TOE10GLL-IP, RxDataError, when the end
of packet is received (RxDataEOP='1" and RxDataValid="1"). If the error is detected, the
interrupt flag, RxErrorint, is asserted to ‘1’ with the latch value of RxDataError, RxErrorLat.
After the user completely reads the interrupt status, interrupt clear flag (RxIntClr) is asserted
to clear the current status.

30-Jun-23 Page 13

dg_toel0gllip_refdesign_intel.doc m

Data counter block (2) includes the counter to count total number of data, received from
TOE10GLL-IP. Valid signal of received data, RxDataValid, and byte enable, RxDataByteEn,
are monitored to check the number of valid bytes in each cycle that can be equalto 1 — 4
bytes. After that, the data counter, rDataByteCnt, is added by the valid received byte. To
support the re-transmitted packet from error recovery process, latch register is designed to
load total number of received data at the end of packet when the packet is valid. This value,
rDataByteOK, is applied to be load value of 48-bit data counter before starting receiving the
new packet. Therefore, it guarantees that total data count continues to count the valid data
without including the error packet. After finishing the test operation, the user can assert clear
flag, TrnSizeClr, to clear the data counter for preparing the next test.

Data verification block (3) has CalExpData which calculates the expected data from the
current data count, generated in block (2). Only 34-bit of the data count is applied. Bit[1:0] is
the byte alignment for setting byte offset of 32-bit expected data. While bit[33:2] is 32-bit
expected data. The expected data (rExpPattData) is compared with the received data
(rRxData) when the user enables the verification flag, VerifyEn. If data verification error is
found while the packet is not error, Failed flag (RdFail) is asserted to ‘1’. The other signals to
show verification error information, i.e., the error position in byte unit (RdFailPos), the
expected value (ExpPatt), and the received value (RdPatt) are latched to show the details of
the first data which is error. The error flag is cleared by asserting TrnSizeClr to ‘1’.

30-Jun-23 Page 14

dg_toel0gllip_refdesign_intel.doc

Asynchronous module for UserDataVer

Most logics in UserReg are run in the same clock as Tx interface of TOE10GLL-IP
(MacTxCIk), except UserDataVer module which is run in the same clock as Rx interface of
TOE10GLL-IP, MacRxClk. Therefore, the signal
asynchronous circuit for clock-crossing domain. AsyncDataVer is designed to convert the
signal from MacTxClk to MacRxCIk and vice versa.
Note: TxCIlk of AsyncDataVer is connected to MacTxClk while RxCIk is connected to

interface with UserDataVer needs

MacRXxCIK.
r /) AsyncDataVer I
1
I
| TxCk | RxClk 1-bit signal
| |
|
SigTx | rSigRx[0 SigRx
| g | - IgRx] | - g
|
|
| |
' . ®
| rPulseTx[3:1] TxClk | RxClk ‘ 1-cycle pulse
I Ris :
Edge |
| Det [FF o[fr [
|
I | rPulseRx[2:0]
»R rPuIseTx!O!
SR -] .
| PulseTx FF : FF FF FF Ris | pulseRx
S | Edge
| : Det
|
| !
| | ®
BusRx[n-1:0] > rBusRx Lat[n{1:0] - ‘ Updated bus
| Lat : BusTx[n-1:0]
| stRxUpdate En i Lat
| > En
State ! rValidToTx -
| Wic S ; | [2:1] Ris
(3 State) SR rVaIlde[O! FF - FF - Edge
stRxLat Det
| WalidRx[2:1] |
|
| rvalidRx[2] | ValidToTx[2]
. FF | FF |
| I
|
| RxClk | TxClk
I T 4
| Stable buso
I RxClk : TxClk
BusRx[n-1:0 BusTx[n-1:0
| [n-1:0] o 10

Figure 2-8 AsyncDataVer block

As shown in Figure 2-8, there are four signal types for converting clock domain, i.e., 1-bit
signal, 1-cycle pulse signal, multiple-bit signal which can be updated, and multiple-bit signal
which is stable value.

30-Jun-23

Page 15

dg_toel0gllip_refdesign_intel.doc m

Block (1) shows two Flip-flops are inserted to solve metastability problem on SigTx signal
which is run on input clock domain (TxCIK). The result is SigRx signal which is applied on
output clock domain (RxCIk). When the signal is one-bit signal and the value is valid for
several cycles, block (1) is applied. The signals of UserDataVer which use block (1) circuit are
VerifyEn, RdFail, and RxErrorint.

When the one-bit signal is a pulse which is asserted to ‘1’ only one cycle, asynchronous circuit
is designed as shown in block (2). First, S-R Flip flop is applied to convert the input signal
(PulseTx) to be asserted to ‘1’ for several clock cycles, assigned as rPulseTx[0]. After that,
the signal is forwarded to the output clock domain (RxCIK) by using three Flip-flops
(rPulseRx[2:0]). The pulse on the output clock domain, PulseRx, is asserted to ‘1’ for one
cycle when rising edge of rPulseRx is found (rPulseRx[2:1]=01b). The signal on the output
clock (rPulseRx[2]) is feedback to the input clock (TxCIKk), assigned as rPulseTx[3:1]. When
detecting the rising edge of rPulseTx[3:2] which can refer that PulseRx was asserted,
rPulseTx[0] is de-asserted to ‘0’ to finish the operation. The signals of UserDataVer which use
block (2) circuit are RxIntClr and TrnSizeClr.

When the signal is bus type which has multiple bits and the signal is always updated,
asynchronous circuit is designed as shown in block (3). Data bus must be latched on input
clock domain (RxCIK) to hold the same value before transferring to the output clock domain
(TxCIk), assigned as rBusRxLat. There is state machine which has three states for controlling
clock-crossing process, i.e., stRxUpdate which is the cycle to latch input signal, stRxLat which
is the cycle to wait until the input signal is transferred to the output clock domain, and
stRxWait which is the cycle to clear the signals on input clock domain to be Idle status. The
state machine is run as forever loop to always update the signal from input clock domain to
output clock domain.

When state machine is in stRxUpdate, the valid signal on input clock domain, rValidRx[0], is
asserted to ‘1’ on input clock domain to start data updating process. The valid signal is
transferred to the output clock domain by using three Flip-flops, rValidToTx[2:0]. The signal is
loaded to output clock domain, assigned as BusTx, when rising edge of valid signal
(rvalidToTx[2:1]) is detected. The valid signal on the output clock domain is feedback to input
clock domain, assigned as rValidRx[2:1]. When rValidRx[2] is asserted to ‘1’, it guarantees
that BusTx was updated. Therefore, state machine changes to stRxWait which is designed to
de-assert rValidRx and rValidToTx to ‘O’. After all valid signal are de-asserted, state machine
returns to the first state, stRxUpdate, to restart the new update loop. The signal of
UserDataVer which uses block (3) circuit is RxCurTrnSize.

The last block (4) is designed when multiple-bit signal is stable for long time before reading
the value. One flip-flop is inserted to change clock synchronous from input clock domain
(RxCIK) to output clock domain (TxCIk). The signals of UserDataVer which use block (4)
circuit are RdFailPos, ExpPatt, and RdPatt.

30-Jun-23 Page 16

dg_toel0gllip_refdesign_intel.doc m

2.5 Timer

TxTimer

Start |

TCPTxValid/ MacTxValid/
TCPTxReady MacTxReady

MacTxClk MacTxClk
MacRxClk

MacRxValid

Stop Start
RxTimer
(2)
£/

Figure 2-9 Timers in the reference design

To measure the latency time of TOE10GLL-IP for both Tx interface and Rx interface, two
timers (TxTimer and RxTimer) are designed. Both timers are controlled by Start flag and Stop
flag. Start flag is asserted to ‘1’ when the first data is detected at the input of the measured
module. Stop flag is asserted to ‘1’ when the first data is detected at the output of the
measured module. The timer latches the value for CPU reading to calculate the time in
nanosecond unit for displaying on the console. As a result, the latency time is measured from
the first packet only. Other packets are not be calculated. The timers are rerun after the user
sends the new request to transfer the data. From above measurement, latency time of
TOE10GLL-IP is measured by start-of-packet of one side and start-of-packet of another side.

30-Jun-23 Page 17

dg_toel0gllip_refdesign_intel.doc m

3 CPU Firmware (FPGA)

In reference design, CPU firmware is implemented as bare-metal OS for easily handling with
the hardware. After the test system is run, the first step in the firmware is hardware
initialization.

)\Welcome message to show IP information

H++

> LL1BGEMACIP Uer 2.8

[1
TOE1GGLLIP Demo [IPUer = 1.8]1 +++
(—J\Select initialization mode
2

Ilnput mode : [B] Client [1] Server [2] Fixed =) a]/

+++

ode
PGA MAC address
PGA IP

PGA port number 60000
192.168.7.25
t _number 6068081 PPFRI T
o skip barameter Settinacx C_omplete |!\|t|allzat|on and
initialization complete display main menu

Gurrent Network Pgi?meter +++

9x00A1020308405 | °
192.168.7.42

Display default network parameters

TOE1B8GLL-IP menu ——-—

: Display TCPIP parameters

Reset TCPIP parameters

Send Data Test (TOEIP -> Target)
Receive Data Test (Target -> TOEIP>
Full duplex Test (TOEIP {-> Target)

Figure 3-1 Message on the console during initialization process

As shown in Figure 3-1, there are four steps to initialize the hardware, described as follows.

1) After FPGA boot-up, 10G Ethernet link up status (EMAC_STS REGIO0]) is polling. The
CPU waits until link up is detected and then displays welcome message to show IP
information.

2) The menu to select the initialization mode of TOE10GLL-IP is displayed. The user can set
as client, server, or fixed MAC mode.

Note:

30-Jun-23

When running in client mode, TOE10GLL-IP sends ARP request to get the MAC
address of the target device from ARP reply. When running in server mode,
TOE10GLL-IP waits until ARP request is received to decode MAC address and return
ARP reply. When running fixed MAC mode, the user needs to know MAC address of
the target device because TOE10GLL-IP does not transfer ARP packet.

When running the test environment by using one FPGA board and Test PC, it is
recommended to set FPGA run as client mode.

When the test environment uses two FPGA boards, there are three solutions to initial
the connection between two boards. First, one is client and another is server. Second,
both are set to fixed MAC mode. Last, one is set to fixed MAC mode and another must
be set to client.

Page 18

dg_toel0gllip_refdesign_intel.doc m

3)

4)

CPU displays default value of the network parameters, i.e., initialization mode, FPGA
MAC address, FPGA IP address, FPGA port number, Target IP address, and Target port
number. The firmware has two default parameter sets for the operation mode. First is the
parameter set for server mode and another is the parameter set for client/fixed MAC mode.
For fixed MAC mode, there is an extra parameter, Target MAC address. The user can
select to complete the initialization process by using default parameters or updating some
parameters. The details to change the parameter are described in Reset IP menu (topic
3.2).

CPU waits until the IP completes the initialization process by checking if InitFinish
(TOE_STS_REG[0]) is equal to '1’. After that, “IP initialization complete” is displayed with
the main menu. There are five test operations in the main menu. More details of each
menu are described as follows.

3.1 Display parameters
This menu is designed to display the current value of all TOE10GLL-IP parameters.

The step to display parameters is as follows.

1)
2)

3)

Read the initialization mode.

Read all network parameters from each variable in firmware following the initialization
mode, i.e., source (FPGA) MAC address, source (FPGA) IP address, source (FPGA) port
number, target MAC address (only displayed in fixed MAC mode), target IP address, and
target port number.

Note: The source parameters are FPGA parameters set to TOE10GLL-IP while the target
parameters are the parameters of TestPC or another FPGA.

Print out each variable.

3.2 Reset parameters
This menu is designed to change some parameters of TOE10GLL-IP such as IP address and
source port number. After setting the updated parameters to TOE10GLL-IP, the CPU resets
the IP to start re-initialization process by using new parameters. Finally, the CPU waits until
the initialization is completed.

The step to reset parameters is as follows.

1)
2)

3)
4)

5)

6)

Display all parameters on the console.

Skip to the next step if the user uses the default value. Otherwise, the menu to set all

parameters is displayed.

a) Receive initialization mode from the user. If the initialization mode is changed, the
latest parameter set of new mode is displayed on the console.

b) Receive remaining parameters from user and validate all inputs. If the input is invalid,
the parameter is not updated.

Force reset to IP by setting TOE_RST_REG[0]="1".

Set all parameters to TOE1OGLL-IP registers such as TOE_SML_REG and

TOE_DIP_REG.

De-assert IP reset by setting TOE_RST_REGJ0]="0’ to start IP initialization process. Also,

UserDataGen and UserDataVer module are reset.

Wait until InitFinish signal (TOE_STS REGI0]) is asserted to ‘1’ after finishing the

initialization process.

30-Jun-23 Page 19

dg_toel0gllip_refdesign_intel.doc m

3.3 Send data test
This menu is designed to test data sending. The user sets the parameters such as total
transmit length and the open connection mode. If all inputs are valid, the port is opened. After
that, 32-bit incremental test data is sent until all data is completely transferred. Finally, the port
is closed in active mode.

The step to send the data is as follows.

1) Receive four parameters, i.e., transmit size, packet size, PSH flag mode, and open
connection mode (active or passive) from user. After that, CPU validates all inputs. The
operation is cancelled if some inputs are invalid.

2) Display recommended parameters of test application on PC by reading current parameters
in the system.

3) Set UserReg parameters, i.e., transfer size (USRTX_TDL/TDH_REG), packet size
(USRTX_PKL_REG), and PSH flag mode (USRTX_PSH_REG).

4) Send open connection command following the connection mode by setting
TOE_CMD_REG=Active open or Passive open. After that, wait untii TCPConnOn status
(TOE_STS_REG[1)) is equal to ‘1’

5) Set USRTX _CMD_REG=Send data to start sending data process by UserDataGen
module. After that, wait until total transmit data size, read by USRTX_LENL/H_REG, is
equal to set value (USRTX_TDL/H_REG). During transferring data, current number of
transmitted data (USRTX_LENL/H_REG) is displayed on console every second.

6) Set close connection command to TOE10GLL-IP register (TOE_CMD_REG=Active close).
After that, wait until TCPConnOn status (TOE_STS REG[1]) is equal to ‘O’

7) Calculate performance and latency time and then display a test result on the console.

30-Jun-23 Page 20

dg_toel0gllip_refdesign_intel.doc m

3.4 Receive data test
This menu is designed to test data receiving. The user sets the parameters such as total
receive length and the open connection mode. If all inputs are valid, the port is opened. After
that, 32-bit incremental test data is created for verifying with the received data from PC/FPGA
when the data verification is enabled.

The step to receive the data is as follows.

1)

2)
3)

4)

5)

6)

7

Receive three parameters, i.e., total transfer data size, data verification mode, and
connection mode (active or passive) from user input. The operation is cancelled if some
inputs are invalid.

Display recommended parameters of test application on PC by reading current
parameters in the system.

Set UserReg parameters, data verification mode (USRRX _CMD_REG). Total transfer
data size is stored as the variable for comparison when finishing the test.

Send open connection command following the connection mode by setting
TOE_CMD_REG=Active open or Passive open. After that, wait until TCPConnOn status
(TOE_STS_REG[1)) is equal to ‘1’

Wait until TCPConnOn status (TOE_STS_REG]I1]) is equal to ‘O’ after the target device
(PC or another FPGA) closes the port when completing transferring all data. During
transferring data, current number of received data (USRRX_LENL/H_REG) is displayed
on console every second.

Compare total receive data length (USRRX_LENL/H_REG) with the variable, total size set
from the user. If they are not the same value, the warning message is displayed. Next,
CPU checks verification result by reading USRRX_STS_REG[8] (‘0’: normal, ‘1’: error)
when user enables the verification. If the error is detected, the error message is displayed.
Calculate performance and latency time and then display a test result on the console.

30-Jun-23 Page 21

dg_toel0gllip_refdesign_intel.doc m

3.5 Full duplex test

This menu is designed to run full duplex test by transferring data in both directions by using
the same port number at the same time. The menu receives the user parameters for running
the test such as total transfer length and packet size. If all inputs are valid, the port is opened.
After that, the data starts transferring. When finishing data transferring in both directions, the
port is closed by the client which may be FPGA or PC. The test is run as forever loop until the
user cancels the operation.

Note: When running the test with PC, connection mode on FPGA must be set to passive
(server operation). The transfer size on the test application, tcp_client_txrx_40G, must be
equal to the transfer size set on FPGA. To stop the test operation, user presses some keys on
FPGA console and then enters “Ctrl+C” on PC console consequently.

The step to run full duplex is as follows.

1) Receive five parameters, i.e., total transfer size (the same size for both directions), packet
size, PSH flag mode, data verification mode, and open connection mode (active or
passive) from user. The operation is cancelled if some inputs are invalid.

2) Display the recommended parameters of test application run on PC by reading current
parameters in the system.

3) Send open connection command following the connection mode by setting
TOE_CMD_REG=Active open or Passive open. After that, wait until TCPConnOn status
(TOE_STS_REG[1)) is equal to ‘1’

4) Set UserReg parameters, i.e., data verification mode (USRRX_CMD_REG), total transfer
size (USRTX_TDL/TDH_REG), packet size (USRTX_ PKL_REG), PSH flag mode
(USRTX_PSH_REG), and command register of UserDataGen (USRTX_CMD_REG) to
start the test operation.

5) Wait until finishing transferring all data in both directions by comparing total transmit data
size and total receive data size. Total transmit data size (USRTX_LENL/H_REG) must be
equal to set value (USRTX_TDL/H_REG). Also, when running active connection mode,
total receive data size (USRRX_LENL/H_REG) must be equal to set value. During
transferring data, current number of transmitted data and number of received data are
displayed on the console every second.

6) Set close connection following connection mode value.

a. For active close, CPU sets close command to TOE10GLL-IP register
(TOE_CMD_REG=Active close). After that, CPU waits untii TCPConnOn status
(TOE_STS_REG[1)) is equal to ‘0’.

b. For passive close, CPU waits until TCPConnOn status (TOE_STS_REG[1]) is equal to
‘0.

7) Check the result and the error (similar to Step 6 of Receive data test).

8) Calculate performance and latency time and then display a test result on the console.
Return to Step 3 to repeat the test in forever loop.

30-Jun-23 Page 22

dg_toel0gllip_refdesign_intel.doc

DG

3.6 Function list in User application

This topic describes the function list to run TOE10GLL-IP operation.

void clr_trns_status(void)

Parameters | None
Return value | None
Description Set USRTX_CMD_REGJ1] and USRRX_CMD_REGJ1] to 1’ to clear

USRTX_LENL/H_REG, USRTX_TMR_REG, USRRX_LENL/H_REG,
and USRRX TMR_REG.

void exec port(unsigned int port ctl, unsigned int mode active)

Parameters

port_ctl: 1-Open port, 0-Close port
mode active: 1-Active open/close, 0-Passive open/close

Return value

None

Description

Write TOE_CMD_REG to open (active or passive) or close (active)
connection. After that, call read_conon function to monitor connection
status until it changes from ON to OFF or OFF to ON when running close
port or open port respectively.

void init_param(void)

Parameters | None
Return value | None
Description Reset parameters following the description in topic 3.2. In the function,

show_param and input_param function are called to display parameters
and get parameter from user.

int input_param(void)

Parameters | None
Return value | 0: Valid input, -1: Invalid input
Description Receive network parameters from user, i.e., Initialization mode, FPGA

MAC address, FPGA IP address, FPGA port number, Target MAC
address (when running fixed MAC mode), Target IP address, and Target
port number. If the input is valid, the parameter is updated. Otherwise,
the value does not change. After receiving all parameters, calling
show param function do display parameters.

unsigned int read conon(void)

Parameters None
Return value | O: Connection is OFF, 1: Connection is ON.
Description Read value from TOE_STS_ REG register and return only bitl value to
show connection status.
30-Jun-23 Page 23

dg_toel0gllip_refdesign_intel.doc

DG

void show _cursize(void)

Parameters | None
Return value | None
Description Read current number of transmitted data and number of received data

from global parameters (tx_cursize and rx_cursize) and then display in
byte, Kbyte, or Mbyte unit

void show ipstate(void)

Parameters | None
Return value | None
Description Read current state value from TOE_STS_ REGJ[20:16] and then display

the result

void show latency(void)

Parameters | None
Return value | None
Description Read USRTX TMR_REG and USRRX_TMR_REG which are latency

time of transmit interface and receive interface of TOE10GLL-IP. After
that, convert the unit from clock cycle to be the time in nsec. Finally, print
out the value.

void show param(void)

Parameters | None
Return value | None
Description Display the parameters following the description in topic 3.1.

void show recv_error(void)

Parameters | None
Return value | None
Description This function is called when error is found during running receive data

test. Read USRRX_ERR_REG and two errors are decoded, i.e., TCP
checksum and EMAC error.

void show_result(void)

Parameters | None

Return value | None

Description Read total transmit data size and total receive data size from global
parameters (tx_cursize and rx_cursize) and display the results. Read
total time usage from global parameters (timer_val) and calculate total
time usage to display in usec, msec, or sec unit. Finally, transfer
performance is calculated and displayed in MB/s unit.

30-Jun-23 Page 24

dg_toel0gllip_refdesign_intel.doc

DG

void show_verfail(void)

Parameters | None
Return value | None
Description This function is called when data verification is failed. Read

USRRX_FAILPOSL/H_REG (failure position), USRRX_EXPPAT_REG
(expected data), and USRRX_RDPAT_REG (received data) and print

out the result on the console to show the details of the first failure data.

int toe_recv_test(void)

Parameters

None

Return value

0: The operation is successful
-1: Receive invalid input or error is found

Description

Run Receive data test following description in topic 3.4. It calls
clr_trns_status, exec_port, read_conon, update_cursize, show_cursize,

show recv error, show verfail, show result, and show latency function.

int toe _send_test(void)

Parameters

None

Return value

0: The operation is successful
-1: Receive invalid input or error is found

Description

Run Send data test following description in topic 3.3. It calls
clr_trn_status, exec_port, read_conon, update_cursize, show_cursize,
show result, and show latency function.

int toe_txrx_test(void)

Parameters

None

Return value

0: The operation is successful
-1: Receive invalid input or error is found

Description

Run Full duplex test following described in topic 3.5. It calls
clr_trns_status, exec_port, read_conon, update_cursize, show_cursize,
show recv error, show verfail, show result, and show latency function.

void update cursize(void)

Parameters | None
Return value | None
Description Read USRTX LENL/H_REG and USRRX LENL/H_ REG and then

update to global parameters (tx cursize and rx _cursize).

void wait_ethlink(void)
Parameters | None
Return value | None
Description Read EMAC_STS_REGI0] and wait until ethernet connection is linked
up
30-Jun-23 Page 25

dg_toel0gllip_refdesign_intel.doc m

4 Test Software on PC

4.1

“tcpdatatest” for half duplex test

B8 Command Prompt - 0 X

D:\Temp>tcpdatatest.exe

[ERROR] The application requires at least 6 input parameters.

RN D M D M M D M 0 M WM D

TCP Data Transfer Test Uersion 1.2
M- 0 e e e D 0

tcpdatatest.exe [Model] [Dir] [ServerIP] [ServerPort] [ByteLen] [Pattern] [Window Scalel

[Mode] PC Operation mode
c:Client mode s:Server mode
[Dir] Transfer direction of PC

t:Transmit data r:Receive data
[ServerIP] Server IP Address
[ServerPort] Server Port number(B-65535)
[ByteLen] Transfer length(Byte)
[Pattern] Disable/Enable Data Pattern in transferring
@:Disahle 1:Enahle
[Window Scalelincrease window size{optional)
1:64K 2:128K 3:256K

[Example] tcpdatatest.exe s t 192.168.7.25 4000 34359738368 @

P:\Temp)_ v
Figure 4-1 “tcpdatatest” application usage

“tcpdatatest” is designed to run on PC for sending or receiving TCP data via Ethernet as
Server or Client mode. It is recommended to run PC in the demo by using Client mode. There
are six parameters which must be set by the user before running the application, described as
follows.

1)
2)

3)

4)
5)

6)

Mode: ¢ —PC runs in Client mode and FPGA runs in Server mode (recommended)
Dir : t—transmit mode (PC sends data to FPGA)

r — receive mode (PC receives data from FPGA)
ServerlP : IP address of FPGA when PC runs in Client mode (default is 192.168.7.42)
ServerPort: Port number of FPGA when PC runs in Client mode (default is 4000)
ByteLen : Total transfer size in byte unit. This input is used in transmit mode only and
ignored in receive mode. In receive mode, the application is closed when the connection is
terminated. In transmit mode, ByteLen must be equal to total transfer size on FPGA, set in
receive data test menu.
Pattern:
0 — Generate dummy data in transmit mode or disable data verification in receive mode.
1 — Generate incremental data in transmit mode or enable data verification in receive
mode.

Note: Window Scale: Optional parameter which is not used in the demo.

30-Jun-23 Page 26

dg_toel0gllip_refdesign_intel.doc m

Transmit data mode

Following sequence is the sequence when test application runs in transmit mode.

1) Get parameters from the user and verify that the input is valid.

2) Create the socket and set socket options.

3) Create the new connection by using server IP address and server port number.

4) Allocate 1 MB memory to be send buffer.

5) Skip this step if the dummy pattern is selected. Otherwise, generate the incremental test
pattern to send buffer.

6) Send data out and read total number of sent data from the function.

7) Calculate remaining transfer size.

8) Print current transmit data size every second.

9) Repeat step 5) — 8) until the remaining transfer size is 0.

10)Calculate transfer performance and print the result on the console.

11)Close the socket and free the memory.

Receive data mode

Following sequence is the sequence when test application runs in receive mode.

1) Follow the step 1) — 3) of Transmit data mode.

2) Allocate memory to be receive buffer.

3) Read data from the receive buffer and calculate total receive size.

4) This step is skipped if data verification is disabled. Otherwise, received data is verified by
the incremental pattern. Error message is printed out when data is not correct.

5) Print current receive data size every second.

6) Repeat step 3) — 5) until the connection is closed.

7) Calculate transfer performance and print the result on the console.

8) Close socket and free the memory.

30-Jun-23 Page 27

dg_toel0gllip_refdesign_intel.doc m

4.2 “tcp_client_txrx_40G” for full duplex test

B8 Command Prompt - 0O X

D:\Temp>tcp_client_txrx_40G.exe

UMMM MMM MM MMM MMM MM MMM MM M

TCP Tx Rx Version 1.1

e 0
tep_client_txerx_40G.exe [ServerIP] [ServerPort] [Bytelen] [Verificationl

[ServerIP] Server IP Address

[ServerPort] Server Port number{@-65535)

[ByteLen] Transfer length(Byte)

[Verification] Disahle/Enable Uerification in transferring
@:Disable 1:Enable

[Example] tcp_client_txrx_40G.exe 192.168.40.42 60000 137438953440 @

FJ:\Temp)_

Figure 4-2 “tcp client txrx 40G” application usage

“tcp_client_txrx_40G” application is designed to run on PC for sending and receiving TCP
data through Ethernet by using the same port number at the same time. The application is run
in Client mode. Therefore, the server parameters are the network parameters of
TOE10GLL-IP. As shown in Figure 4-2, there are four parameters to run the application,
described as follows.

1) ServerlP . IP address of FPGA
2) ServerPort : Port number of FPGA
3) BytelLen : Total transfer size in byte unit. This is total number of transmitted data

and received data. This value must be equal to the transfer size set on FPGA for running
full-duplex test.

4) Verification
0 — Generate dummy data for sending function and disable data verification for receiving
function. When running this mode, it shows the best performance of full-duplex transfer.
1 — Generate incremental data for sending function and enable data verification for
receiving function.

30-Jun-23 Page 28

dg_toel0gllip_refdesign_intel.doc m

The sequence of test application is as follows.

(1) Get parameters from the user and verify that the input is valid.

(2) Create the socket and set socket options.

(3) Create the new connection by using server IP address and server port number.

(4) Allocate 64 KB memory for send buffer and receive buffer.

(5) Generate incremental test pattern to send buffer when the test pattern is enabled. Skip this
step if dummy pattern is selected.

(6) Send data out, read total sent data from the function, and calculate remaining send size.

(7) Read data from the receive buffer and calculate total receive data size.

(8) Skip this step if data verification is disabled. Otherwise, data is verified by incremental
pattern. Error message is printed out when data is not correct.

(9) Print current send data size and current receive data size every second.

(10)Repeat step 5) — 9) until total number of send size and total number of receive size are
equal to ByteLen, set by user.

(11)Calculate transfer performance and print the result on the console.

(12)Close the socket.

(13)Sleep for 1 second to wait until the hardware completes the current test loop.

(14)Repeat step 3) — 13) in forever loop. If verification is failed, the application is stopped.

30-Jun-23 Page 29

dg_toel0gllip_refdesign_intel.doc

5 Revision History

Revision Date Description
1.0 27-Apr-21 Initial version release
1.1 5-May-21 Update clock domain name
30-Jun-23

Page 30

