
dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23

UDP10GRx-IP 16-Session reference design

1 Introduction ... 1
2 Hardware overview .. 3

2.1 Xilinx Transceiver (PMA for 10GBASE-R) .. 4
2.2 LL10GEMAC... 4
2.3 PMARstCtrl ... 4
2.4 TxEMACMux4to1 .. 5
2.5 UDP10GRxIP.. 7
2.6 UDPRx16SS2AXI4 ... 7
2.7 CPU and Peripherals .. 12

2.7.1 SAXIReg .. 13
2.7.2 UserReg ... 15
2.7.3 UserDataVer ... 19

3 CPU Firmware (FPGA) ... 21
3.1 Display parameters ... 23
3.2 Set parameters ... 23
3.3 Receive data test .. 24
3.4 Function list in User application .. 25

4 Test Software on PC ... 27
5 Revision History .. 30

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 1

UDP10GRx-IP 16-Session reference design
Rev1.0 4-Jul-23

1 Introduction

Figure 1-1 Low latency solution for Fintech application

The key point of Fintech application is to receive the market data at the lowest latency time. The
left side of Figure 1-1 shows the example design of Fintech application on Xilinx board by using
10G/25G Ethernet Subsystem, Xilinx IP core, to implement EMAC, PCS, and PMA layer. To
integrate the system coded by HLS, the adapter logic must be designed to convert Ethernet
subsystem interface to AXI4 standard bus and run at application clock. The remaining logic of
Fintech such as UDP/IP, Line handler, and Order book management are also coded by HLS.
Using HLS reduces the system development time but the resource and latency time is generally
larger than using HDL code.

Design Gateway purposes the very low latency solution for Fintech application by using
UDP10GRx-IP and LL10GEMAC-IP, as shown in the right side of Figure 1-1. DG solution
achieves the lowest latency time. The adapter logic is designed to integrate many UDP10GRx-IPs
for supporting more than four session operation. Also, the adapter logic converts the interface to
AXI4 standard bus at application clock for integrating with the remaining blocks that are coded by
HLS.

For simple demo, the reference design is designed by HDL. The application block is replaced by
UserLogic HDL module that is designed to verify the received UDP data stream. The adapter
supports 16 sessions, so four UDP10GRx-IPs are integrated. Small adapter logic is also designed
to connect four UDP10GRx-IPs to one LL10GEMAC-IP.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 2

Figure 1-2 Test logic for running 16 sessions by 4 UDP10GRx-IPs

UserDataVer is the logic to receive 16-session data from the adapter (UDPRx16SS2AXI4) which
is sent by four UDP10GRx-IPs. UserDataVer is coded by HDL to verify the data. Besides, two
timers are integrated to measure latency time of received path inside UDP10GRx-IP and
UDPRx16SS2AXI4. While Clk is fixed clock that is generated by PMA module at 322.265625 MHz,
AppClk is the application clock to synchronous with the user application. In the reference design,
AppClk is set to 300 MHz. Rx latency time of UDP10GRx-IP is about 37.2 ns (12 cycles of Clk)
and Rx latency time of UDPRx16SS2AXI4 is about 39.3 ns (9 cycles of AppClk + 3 cycles of Clk).

Test application on Windows OS (trans_udp_multi) is designed to transmit UDP/IP packets up to
16 sessions, set by user. The test operation on FPGA board is controlled by user via Serial
console. More details of the demo are described as follows.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 3

2 Hardware overview

Figure 2-1 UDP10GRx16SSTest Block Diagram

The test system includes CPU for simple user interface and flexible test. Test parameters such as
network parameters and transfer size are set by the user via Serial console. During running the
test, the progress status of the test such as current transfer size is displayed on the console. The
standard bus, AXI4-Lite bus, is applied to connect the hardware to CPU system. LAxi2Reg is the
interface module to convert AXI4-Lite interface to be Control interface of UDP10GRx module.
Also, it includes UserDataVer to verify the received data of 16 sessions via 64-bit AXI4-ST Rx
data bus and 16-bit AXI4-ST Metadata bus.

UDPRx16SS2AXI4 is the module for converting the received data of four UDP10GRx-IPs which is
32-bit bus size to be 64-bit AXI4-ST bus with Metadata bus. While 64-bit AXI4-ST transfers the
received data, Metadata transfers the active session number, session no#0-#15. Also,
UDPRx16SS2AXI4 includes asynchronous logic to convert clock domain from MacRxClk, output
from PMA, that is fixed to 322.266 MHz to be application clock domain (AppClk) that is user clock.

Besides, TxEMACMux4to1 is the module to be data multiplexer that receives TxEMAC I/F of four
UDP10GRx-IP to send to TxEMAC I/F of LL10GEMAC via 32-bit AXI4-ST bus. TxEMAC is run on
MacTxClk domain which is equal to 322.266 MHz.

LL10GEMAC-IP is IP core provided by Design Gateway while PMA module (BASE-R) is provided
by Xilinx without charge. PMARstCtrl is the logic to control reset sequence of Xilinx Transceiver.

“trans_udp_multi” is the application, run on Windows OS, to transfer UDP data up to 16 sessions
by using Multicast mode or Unicast mode.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 4

2.1 Xilinx Transceiver (PMA for 10GBASE-R)

PMA IP core for 10Gb Ethernet (BASE-R) is generated by using Vivado IP catalog. In FPGA
Transceivers Wizard, the user uses the following settings.

• Transceiver configuration preset : GT-10GBASE-R

• Encoding/Decoding : Raw

• Transmitter Buffer : Bypass

• Receiver Buffer : Bypass

• User/Internal data width : 32

More details of Transceiver wizard in UltraScale/UltraScale+ FPGA are described in the
following link.

https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html

2.2 LL10GEMAC

The IP core by Design Gateway implements low-latency EMAC and PCS logic for 10Gb
Ethernet (BASE-R) standard. The user interface is 32-bit AXI4-stream bus. Please see more
details from LL10GEMAC-IP datasheet on our website.
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en.pdf

2.3 PMARstCtrl

When the buffer inside Xilinx Transceiver is bypassed, the user logic must control reset signal
of Tx buffer and Rx buffer. The module includes state machine to run following steps.
(1) Assert Tx reset of the transceiver to ‘1’ for one clock cycle.
(2) Wail until Tx reset done, output from the transceiver, is asserted to ‘1’.
(3) Complete Tx reset sequence and de-assert Tx reset, user interface output, to allow the

user logic beginning Tx operation.
(4) Assert Rx reset to the transceiver.
(5) Wait until Rx reset done, output from the transceiver, is asserted to ‘1’.
(6) Complete Rx reset sequence and de-assert Rx reset, user interface output, to allow the

user logic beginning Rx operation.

https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en.pdf

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 5

2.4 TxEMACMux4to1

The system consists of four UDP10GRx-IPs which shares the same EMAC. Therefore,
TxEMACMux4to1 is designed to transfer the transmitted packet from four UDP10GRx-IPs to
one EMAC. The core signal inside this module is rChSel that is applied to select one active
UDP10GRx-IP module from four modules. Timing diagram of this module is displayed in
Figure 2-2.

Figure 2-2 TxEMACMux4to1 timing diagram

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 6

(1) If there is no data transferred in the current channel and the data valid of the inactive

channel is asserted to ‘1’, rChSel (the signal to indicate the active channel) will be
switched to the new channel. As shown in Figure 2-2, rChSel changes from 11b to 00b to
forwarding the data from Ch#0 to EMAC.
Note: Tx Latency time of TxEMACMux4to1 depends on rChSel characteristic.
a) If the active channel does not change (Receive two packets from the same channel),

Tx latency time to assert tx_axis_tvalid after MacTxValid asserted is about 2 cycles.
b) When the active channel is changed (Two packets are received from different channel),

Tx latency time from MacTxValid to tx_axis_tvalid is equal to 3 cycles.
(2) MacTxReady of the active channel is asserted to ‘1’ to accept the data from the active

channel that asserts MacTxValid to ‘1’.
(3) After MacTxValid and MacTxReady of the active channel (Ch#0) are asserted to ‘1’,

tx_axis_tvalid is asserted to ‘1’ to send the data of the active channel (MacTxData[0]) to
EMAC.

(4) During transferring a packet, MacTxReady can be de-asserted to ‘0’ when EMAC pauses
data reception by de-asserting tx_axis_tready to ’0’. Therefore, MacTxReady is similar to
tx_axis_tready until transferring end of packet.

(5) tx_axis_tlast is asserted to ‘1’ to send the final data of packet when MacTxEOP of the
active channel is asserted to ‘1’. The packet transmission is finished when EMAC accepts
the final data by asserting tx_axis_tready to ‘1’.

(6) After transferring the final data, MacTxValid of the current channel must be de-asserted to
‘0’. The logic starts scanning MacTxValid of other channels. If there is data requested from
the inactive channel, rChSel changes the value to change the active channel. As shown in
Figure 2-2, rChSel changes from 00b to 01b to start receiving the data from Ch#1.

(7) After that, the data of Ch#1 is transferred to EMAC until end of a packet. Step (2) – (5) are
repeated.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 7

2.5 UDP10GRxIP

The IP core by Design Gateway is designed to receive and decode UDP/IP packet from
EMAC. UDP payload is extracted from the received packet and then forwarded to the user
with very low latency time. Up to four sessions are supported by the IP. More details of
UDP10GRx-IP are described in UDP10GRx-IP datasheet, provided on our website.
https://dgway.com/products/IP/Lowlatency-IP/dg_udp10grxip_data_sheet_xilinx_en.pdf

2.6 UDPRx16SS2AXI4

Figure 2-3 UDPRx16SS2AXI4 Block diagram

One UDP10GRx-IP supports to receive four session data from the same EMAC. When 16
session data is required, four UDP10GRx-IPs must be applied. User interface of
UserDataVer has two AXI4-ST bus, 64-bit UserData and 16-bit MetaData. 64-bit UserData
is applied to receive UDP payload data from 16 session. MetaData is the bus to send the
session number in binary unit, so 4-bit value (0000b – 1111b) is assigned for 16 sessions.
One MetaData is transferred to show the session number of one packet data on UserData
bus.

UDPRx16SS2AXI4 forwards 16 session data from four UDP10GRx-IPs to UserDataVer by
using AXI4-ST interface. Four UDP10GRx-IPs shares the same EMAC, so there is one
session data forwarded from UDP10GRx-IPs. The data stream from UDP10GRx-IPs that is
synchronous on MacRxClk must be converted to AppClk domain. Also, the session number
must be encoded with the data stream. Small asynchronous FIFO with FWFT type
(AsyncFWFTFifo16x78) is applied to convert 32-bit data bus in MacRxClk domain (322.265
MHz) to 64-bit data bus in AppClk domain (independent clock). Data size in FIFO is 78 bits
(64-bit data, 8-bit byte enable, end-of-packet flag, error flag, and 4-bit session ID). The
logics inside UDPRx16SS2AXI4 are divided to two groups, 32-bit to 64-bit data converter
and alignment for writing FIFO and FIFO read controller for reading FIFO. More details are
shown in Figure 2-4 - Figure 2-6.

https://dgway.com/products/IP/Lowlatency-IP/dg_udp10grxip_data_sheet_xilinx_en.pdf

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 8

Figure 2-4 shows timing diagram of 32-bit to 64-bit data converter and alignment to write
FIFO when receiving the data from session#2 of UDP10GRx-IP#0. Total number of received
data is aligned to 64-bit, so the dummy data is not filled by the logic.

Figure 2-4 Timing diagram to write FIFO without filling dummy data

(1) When the new packet is received (UDPRxValid=’1’ and UDPRxSOP=’1’), the session ID is

decoded. For instance, rSSIDLat=2 when session#2 of UDP10GRx-IP#0 is transferred.
rSSIDLat does not change until receiving the first data of the new packet.
Note: UDPRxValid can be asserted only 1 session at a time.

(2) When the data is received (UDPRxValid=’1’), the received data (UDPRxData) of the active
session is loaded to rRxDataH. At the same time, rWordHEn toggles the value and
rRxDataL loads the value from rRxDataH. When two data is received (UDPRxValid=’1’
and rWordHEn=’1’), 64-bit data (rRxDataH and rRxDataL) is stored to FIFO by asserting
FIFO write enable (rU2AFfWrEn) to ‘1’.

(3) When the data is not ready, UDP10GRx-IP de-asserts UDPRxValid to ‘0’ to pause data
transmission. The logic to write the FIFO also pauses the operation (rU2AFfWrEn=’0’).

(4) When the final data of a packet is received with 64-bit alignment (UDPRxValid=’1’,
UDPRxEOP=’1’, and rWordHEn=’1’), the final 64-bit data is stored to FIFO without filling
dummy data to align 64-bit.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 9

The example when the received data is not aligned to 64-bit and one dummy data must be
filled is shown in Figure 2-5. The data is received from session#1 of UDP10GRx-IP#1.

Figure 2-5 Timing diagram to write FIFO with filling dummy data

(1) When the final data of a packet is received and total number of received data is not aligned

to 64-bit (UDPRxValid=’1’, UDPRxEOP=’1’, and rWordHEn=’0’), rDummyEn is asserted to
‘1’ to fill one dummy 32-bit data.

(2) After rDummyEn is asserted, rRxDataL loads the last data from rRxDataH while the
dummy data is loaded to rRxDataH. At the same time, rU2AFfWrEn is asserted to ‘1’ to
store the final data which consists of 32-bit final data and 32-bit dummy data to FIFO.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 10

Figure 2-6 shows timing diagram of FIFO Read controller to read FIFO and transfer read
data to UserDataVer via 64-bit UserData AXI4-ST bus and session number via 16-bit
MetaData AXI4-ST bus. One MetaData is written for one packet of UserData. MetaData is
sent at the same time as sending the first data on UserData.

FIFO in the design is FWFT type, so Read data of FIFO (U2AFfRdData) is valid at the same
time as Read enable of FIFO (wU2AFfRdAck) is asserted to ‘1’. 78-bit read data from FIFO
(U2AFfRdData) description is assigned by following signals.
Bit[63:0] : 64-bit data
Bit[71:64] : 8-bit byte enable
Bit[72] : Last flag to show end of packet
Bit[73] : Error flag of the packet
Bit[77:74] : 4-bit Session ID

Figure 2-6 Timing diagram of FIFO Read controller

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 11

(1) rRd1stEn is asserted to ‘1’ when the read data from FIFO is the first data of a packet. FIFO

read enable (wU2AFfRdAck) is asserted to ‘1’ by two methods.
(i) If the data is the first data of a packet (rRd1stEn=’1’), wU2AFfRdAck is asserted to

‘1’ when FIFO is not empty (U2AFfEmpty=’0’).
(ii) If the data is not the first data of a packet (rRd1stEn=’0’), wU2AFfRdAck is asserted

to ‘1’ when FIFO is not empty (U2AFfEmpty=’0’) and RxAxiSReady=’1’.
FIFO is FWFT type, so the read data of FIFO (U2AFfRdData) is valid at the same clock as
wU2AFfRdAck asserted.

(2) Bit[77:74] of U2AFfRdData is loaded to Meta data output (RxAxiSMetaData) to show the
session ID with asserting valid signal (RxAxiSMetaValid=’1’) when the first data is read
(wU2AFfRdAck=’1’ and rRd1stEn=’1’). Bit[63:0] of U2AFfRdData is loaded to User data
output (RxAxiSData) with asserting valid signal (RxAxiSValid=’1’) when FIFO read enable
is asserted (wU2AFfRdAck=’1’). Besides, rRd1stEn is de-asserted to ‘0’ after the first data
is read from FIFO.

(3) After reading the first data, the read enable of FIFO (wU2AFfRdAck) is controlled by FIFO
empty (U2AFfEmpty) and User ready (RxAxiSReady). The read enable is asserted to ‘1’
when U2AFfEmpty=’0’ and RxAxiSReady=’1’. U2AFfRdData[63:0] is loaded to be
RxAxiSData.

(4) RxAxisMetaValid is de-asserted to ‘0’ after the user sends acknowledge by asserting
RxAxiSMetaReady to ‘1’.

(5) wU2AFfRdAck is de-asserted to ‘0’ to pause reading data when FIFO is empty
(U2AFfEmpty=’1’) or the user is not ready (RxAxiSReady=’0’).

(6) If the data is sent to user (RxAxiSValid=’1’ and RxAxiSReady=’1’) but wU2AFfRdAck is
de-asserted to ‘0’, RxAxiSValid will be de-asserted to ‘0’ in the next cycle. It will be
re-asserted to ‘1’ when wU2AFfRdAck is re-asserted to ‘1’.

(7) When the final data of a packet is read from FIFO (U2AFfRdData[72]=’1’), the last flag
(RxAxiSLast) is asserted to user. Also, rRd1stEn is re-asserted to ‘1’ to scan the first data
of the next packet.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 12

2.7 CPU and Peripherals

32-bit AXI4-Lite bus is applied to be the bus interface for CPU accessing the peripherals such
as Timer and UART. The test logic is connected with CPU as a peripheral on 32-bit AXI4-Lite
bus for CPU controlling and monitoring. CPU assigns the base address and the range for
accessing the test logic. Therefore, the hardware logic must support AXI4-Lite bus standard
for CPU writing and reading. LAxi2Reg module is designed to connect the CPU system via
AXI4-Lite bus as shown in Figure 2-7.

Figure 2-7 LAxi2Reg block diagram

LAxi2Reg consists of SAXIReg and UserReg. SAXIReg converts the AXI4-Lite signals to be
the simple register interface which has 32-bit data bus size (similar to AXI4-Lite data bus size).
UserReg includes the register file to set test parameters and store the status signals of the
test logic. Data interface of UDPRx16SS2AXI4 is connected to UserReg to verify the received
data. Also, the control interface of four UDP10GRx-IPs is connected to UserReg. More details
of SAXIReg and UserReg are described as follows.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 13

2.7.1 SAXIReg

Figure 2-8 SAXIReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. The
logic inside SAXIReg to interface with AXI4-Lite bus is split into four groups, i.e., Write control
logic, Write data logic, Read control logic, and Read data logic as shown in the left side of
Figure 2-8. Write control I/F and Write data I/F of AXI4-Lite bus are latched and transferred to
be Write register interface. Similarly, Read control I/F of AXI4-Lite bus are latched and
transferred to be Read register interface. While the returned data from Register Read I/F is
transferred to AXI4-Lite bus. In register interface, RegAddr is shared signal for write and read
access. Therefore, it loads the address from LAxiAw for write access or LAxiAr for read
access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-9.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 14

Figure 2-9 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be 4-byte data enable. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid respectively.

2) To read register, SAXIReg asserts RegRdReq to ’1’ with the valid value of RegAddr. 32-bit
data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. Therefore, the
address can be used for selecting the returned data by using multiple multiplexers.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, SAXIReg forwards the read value to LAxir* interface.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 15

2.7.2 UserReg

Figure 2-10 UserReg block diagram

The logic inside UserReg is divided to two parts, Register interface and UserDataVer.
UseDataVer is the module to verify 16 session data, output of UDPRx16SSAXI4 which
describes in more details in the next topic. The logic for register interface is split to three parts.
First is the address decoder to decode the address to select the active register for write and
read access. Second is the register file to store the test parameters that are set by user such
as the network parameters of UDP10GRx-IP and the initial value to verify data of
UserDataVer. Last is the data multiplexer to select the read data to return to CPU. Many
signals are mapped from UDP10GRx-IP and UserDataVer for CPU reading.

Address Decoder
The address range inside UserReg is split to three areas, two areas for write access and one
area for read access, as shown in Figure 2-10.
1) 0x0000 – 0x05FF: Write only area for setting the parameters of four UDP10GRx-IPs such

as network parameters.
2) 0x0600 – 0x07FF: Write only area for setting the parameters of UserDataVer modules

such as initial value of expected pattern.
3) 0x0800 – 0x0FFF: Read only area for reading the status signals of four UDP10GRx-IPs

such as Error flags and active channel. Also, the status signals of UserDataVer such as
current transfer size are mapped.

Address decoder decodes the upper bit of RegAddr to select active region while the lower bit
is fed to Register File and Register Mux for selecting the active register.

Register
The register file inside UserReg is 32-bit bus size. Therefore, write byte enable
(RegWrByteEn) is not applied in the test system. CPU uses 32-bit pointer to set the hardware
registers. To read register, multiplexer is designed to select the active status register to return
read data to CPU. There are many status registers for reading, so many multiplexers are
applied to balance the number of inputs for each multiplexer. Totally, the latency of read data
is equal to three clock cycles. Therefore, RegRdValid is created by RegRdReq with asserting
three D Flip-flops. The address map in UserReg module is shown in Table 2-1.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 16

Table 2-1 Register map Definition

Address Register Name Description

Wr/Rd (Label in the udp10grx16sstest.c”)

BA+0x0000 – BA+0x05FF: UDP10GRx-IP (Write access only)

More details of UDP10GRx-IP signals are described in UDP10GRx-IP datasheet

BA+0x0000 - BA+0x01FF: Shared signals
BA+0x0000 Session Enable Reg [15:0]: Input to be Session enable of UDP10GRx-IP#0-#3

([3:0]: SSEnable[3:0] of UDP10GRx-IP#0,

[7:4]: SSEnable[3:0] of UDP10GRx-IP#1,

[11:8]: SSEnable[3:0] of UDP10GRx-IP#2,

[15:12]: SSEnable[3:0] of UDP10GRx-IP#3)

(UDP_SSEN_REG)

BA+0x0004 Multicast Enable Reg [0]: Input to be Multicast enable of UDP10GRx-IP

(McastEn of UDP10GRx-IP#0-3) (UDP_MCEN_REG)

BA+0x0040 Source MAC Address (Low) Reg [31:0]: Input to be source MAC address

(SrcMacAddr[31:0] of UDP10GRx-IP#0-3) (UDP_SML_REG)

BA+0x0044 Source MAC Address (High) Reg [15:0]: Input to be source MAC address

(SrcMacAddr[47:32] of UDP10GRx-IP#0-3) (UDP_SMH_REG)

BA+0x0048 Source IP Address Reg [31:0]: Input to be source IP address

(SrcIPAddr of UDP10GRx-IP#0-3) (UDP_SIP_REG)

BA+0x0200 – BA+0x027F: UDP10GRx-IP#0, BA+0x0280 – BA+0x02FF: UDP10GRx-IP#1

BA+0x0300 – BA+0x037F: UDP10GRx-IP#2, BA+0x0380 – BA+0x03FF: UDP10GRx-IP#3

BA+0x0200 Source Port Num Reg [15:0]: Input to be source port number#0

(SrcPort0 of UDP10GRx-IP#0) (UDP_SPN0_REG)

BA+0x0204 Target Port Num Reg [15:0]: Input to be target port number#0

(DstPort0 of UDP10GRx-IP#0) (UDP_DPN0_REG)

BA+0x0208 Target IP Address Reg [31:0]: Input to be target IP address#0

(DstIPAddr0 of UDP10GRx-IP#0) (UDP_DIP0_REG)

BA+0x020C Multicast IP Address Reg [31:0]: Input to be multicast IP address#0
(McastIPAddr0 of UDP10GRx-IP#0) (UDP_MIP0_REG)

BA+0x0220-

BA+0x022C

Session#1 parameters

(UDP_SPN1_REG -

UDP_MIP1_REG)

0x0220: SrcPort1 of UDP10GRx-IP#0

0x0224: DstPort1 of UDP10GRx-IP#0

0x0228: DstIPAddr1 of UDP10GRx-IP#0

0x022C: McastIPAddr1 of UDP10GRx-IP#0
BA+0x0240-

BA+0x024C

Session#2 parameters

(UDP_SPN2_REG –

UDP_MIP2_REG)

0x0240: SrcPort2 of UDP10GRx-IP#0

0x0244: DstPort2 of UDP10GRx-IP#0

0x0248: DstIPAddr2 of UDP10GRx-IP#0

0x024C: McastIPAddr2 of UDP10GRx-IP#0

BA+0x0260-

BA+0x026C

Session#3 parameters

(UDP_SPN3_REG –

UDP_MIP3_REG)

0x0260: SrcPort3 of UDP10GRx-IP#0

0x0264: DstPort3 of UDP10GRx-IP#0

0x0268: DstIPAddr3 of UDP10GRx-IP#0

0x026C: McastIPAddr3 of UDP10GRx-IP#0

BA+0x0280-

BA+0x02EC

Session#4 - #7 parameters

Similar to 0x0200 – 0x27F (UDP10GRx-IP#0), define parameters of

Session#4-#7 to SS#0 – SS#3 of UDP10GRx-IP#1

BA+0x0300-

BA+0x036C

Session#8 - #11 parameters

Similar to 0x0200 – 0x27F (UDP10GRx-IP#0), define parameters of

Session#8-#11 to SS#0 – SS#3 of UDP10GRx-IP#2

BA+0x0380-

BA+0x03EC

Session#12 - #15 parameters

Similar to 0x0200 – 0x27F (UDP10GRx-IP#0), define parameters of

Session#12-#15 to SS#0 – SS#3 of UDP10GRx-IP#3

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 17

Address Register Name Description

Wr/Rd (Label in the udp10grx16sstest.c”)

BA+0x0600 – BA+0x07FF: UserReg (Write access only)

BA+0x0600 User Command Reg [0]: Start flag of UserDataVer. Set to ‘1’ to start the operation. This flag is

auto-cleared. This signal is also applied to clear the timer to check latency

time of UDP10GRx-IP.

[1]: Verification enable.

‘0’: Disable data verification, ‘1’: Enable data verification

(USER_CMD_REG)

BA+0x0604 User Clear Reg [0]: Reset flag to clear error flags (UserError) of UserDataVer which are

mapped to USER_ERR0_7/8_15_REG. Set to ‘1’ to clear error signals.

This flag is auto-cleared.

(USER_CLR_REG)

BA+0x0680-

BA+0x06BC

User Start Pattern0-15 Reg [31:0]: Start value of 32-bit incremental pattern for verifying data in

Session#0-#15 of UserDataVer.

0x680: SS#0, 0x684: SS#1, 0x688: SS#2, 0x68C: SS#3,

0x690: SS#4, 0x694: SS#5, 0x698: SS#6, 0x69C: SS#7,

0x6A0: SS#8, 0x6A4: SS#9, 0x6A8: SS#10, 0x6AC: SS#11,

0x6B0: SS#12, 0x6B4: SS#13, 0x6B8: SS#14, 0x6BC: SS#15

(USER_PAT0-15_REG)

BA+0x0800 – BA+0x0FFF: UDP10GRx-IP and UserReg (Read access only)

BA+0x0800 EMAC Status Reg [0]: Ethernet MAC Link up status. ‘0’-Link down, ‘1’-Link up.

(Linkup of LL10GEMAC-IP) (EMAC_STS_REG)

BA+0x0804 EMAC IP Version [31:0]: IP version of LL10GEMAC-IP

(EMAC_VER_REG)

BA+0x0808 UDP10GRx-IP Version [31:0]: IP Version of UDP10GRx-IP#0

(UDP_VER_REG)

BA+0x080C Session Active of UDP10GRx-IP [15:0] Session active status. (‘0’: Not active, ‘1’: Active).

Bit[0]: SS#0, [1]: SS#1, …, and [15]: SS#15.

([3:0]: SSActive[3:0] of UDP10GRx-IP#0,

[7:4]: SSActive[3:0] of UDP10GRx-IP#1,

[11:8]: SSActive[3:0] of UDP10GRx-IP#2,

[15:12]: SSActive[3:0] of UDP10GRx-IP#3)

(UDP_SSAC_REG)

BA+0x0820 Test pin of UDP10GRx-IP#0 [31:0]: Mapped to TestPin of UDP10GRx-IP#0

(UDP_TESTPIN0_REG)

BA+0x0824 Test pin of UDP10GRx-IP#1 [31:0]: Mapped to TestPin of UDP10GRx-IP#1

(UDP_TESTPIN1_REG)

BA+0x0828 Test pin of UDP10GRx-IP#2 [31:0]: Mapped to TestPin of UDP10GRx-IP#2

(UDP_TESTPIN2_REG)

BA+0x082C Test pin of UDP10GRx-IP#3 [31:0]: Mapped to TestPin of UDP10GRx-IP#3

(UDP_TESTPIN3_REG)

BA+0x0840 User Error SS#0-#7 Reg [31:0] Error status of Session#0 - #7.

[0]: Data verification of SS#0 is failed. (‘0’-No error, ‘1’-Fail)

[1]: UDP10GRx-IP detects error in SS#0 (‘0’-No error, ‘1’-Error found)
[5:4]: SS#1 error, similar to bit[1:0].

[9:8], [13:12], [17:16], [21:20], [25:24], [29:28]: SS#2, #3, .., #7 error.

(USER_ERR0_7_REG)

BA+0x0844 User Error SS#8-#15 Reg [31:0] Error status of Session#8 - #15, similar to 0x0840

(USER_ERR8_15_REG)

BA+0x0860 UDP10GRx Latency time Reg [31:0]: Latency time of received data of UDP10GRx-IP, measured from

start-of-packet to start-of-packet. Time unit is 3.1 ns. (UDPRX_TIME_REG)

BA+0x0864 UDP10G to AXI4 Latency time Reg [31:0]: Latency time of received data of UDPRx16SS2AXI4, measured

from start-of-packet to start-of-packet. Time unit is 3.1 ns. (UDP2AXI_TIME_REG)

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 18

Address Register Name Description

Wr/Rd (Label in the udp10grx16sstest.c”)

BA+0x0800 – BA+0x0FFF: Output signals of UDP10GRx-IP and UserReg (Read access only)

BA+0x0C00 Received byte size#0 (Low) Reg [31:0]: The lower 32-bit of current received data size in byte unit when

receiving data from Session#0 (USER_RXLENL0_REG)

BA+0x0C04 Received byte size#0 (High) Reg [15:0]: The upper 16-bit of current received data size in byte unit when

receiving data from Session#0 (USER_RXLENH0_REG)

BA+0x0C08 Failure byte position#0 (Low) Reg [31:0]: The lower 32-bit of failure position of the 1st failure data in byte unit

when receiving data from Session#0 (USER_RDFAILL0_REG)

BA+0x0C0C Failure byte position#0 (High) Reg [15:0]: The upper 16-bit of failure position of the 1st failure data in byte unit

when receiving data from Session#0. (USER_RDFAILL0_REG)

BA+0x0C10 Expected data#0 (Low) Reg [31:0]: The lower 32-bit of expected data at the 1st failure data when

receiving data from Session#0 (USER_EXPPATL0_REG)

BA+0x0C14 Expected data#0 (High) Reg [31:0]: The upper 32-bit of expected data at the 1st failure data when

receiving data from Session#0 (USER_EXPPATH0_REG)

BA+0x0C18 Received data#0 (Low) Reg [31:0]: The lower 32-bit of received data at the 1st failure data when

receiving data from Session#0 (USER_RDPATL0_REG)

BA+0x0C1C Received data#0 (High) Reg [31:0]: The upper 32-bit of received data at the 1st failure data when

receiving data from Session#0 (USER_RDPATH0_REG)

BA+0x0C20-

BA+0x0C3C

USER_RXLENL1_REG –

USER_RDPATH1_REG

Similar to 0x0C00-0x0C1C, the received data status when receiving data

from Session#1

BA+0x0C40-

BA+0x0C5C

USER_RXLENL2_REG –

USER_RDPATH2_REG

Similar to 0x0C00-0x0C1C, the received data status when receiving data

from Session#2

BA+0x0C60-

BA+0x0C7C

USER_RXLENL3_REG –

USER_RDPATH3_REG

Similar to 0x0C00-0x0C1C, the received data status when receiving data

from Session#3

BA+0x0C80-

BA+0x0DFC

USER_RXLENL4-15_REG –

USER_RXPATH4-15_REG

Similar to 0x0C00-0x0C1C, the received data status when receiving data

from Session#4 - #15

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 19

2.7.3 UserDataVer

Figure 2-11 UserDataVer

UserDataVer is the example logic to show how to interface with UDPRx16SS2AXI4 for
receiving data from 16 sessions. As shown in the right side of Figure 2-11, there are two user
interfaces – MetaData and UserData. UserDataVer verifies the received data and monitors
the error status.

The control signal and initial value for verification from Register are set by Register inside
UserReg, as shown in the left side of Figure 2-11. PattStart is asserted to ‘1’ to load the initial
value of the pattern data in each session, assigned by InitPatt. Also, PattStart is applied to
reset the value of the internal logic at the beginning of the new test loop.

MetaData
MetaData and UserData interface are controlled by State machine. Firstly, State machine
reads the active session number from MetaData interface. UserMetaReady is asserted to ‘1’
to receive one MetaData. After that, the session number is loaded to rSSIDLat. This value is
valid until receiving the final data of a packet from UserData.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 20

UserData
After loading MetaData, State machine asserts UserDataReady to ‘1’ to receive one packet
data via UserData until receiving the final of a packet. When the received data is valid
(UserDataValid=’1’ and UserDataReady=’1’), TrnSize counter to count the number of
received data (rCurTrnSize) is increased. At the same time, PattGen is counted to create the
next expected data (rExpPattCnt) to compare with the next received data (UserData).
Typically, one cycle receives 8-byte user data except the final data of a packet that may be
valid for 1-8 bytes, checked by UserDataByteEn. Therefore, UserDataByteEn is decoded to
be the offset for counting rCurTrnSize and rExpPattCnt. The expected data is compared to
the received data. If the value does not match, fail flag (RdFail) is asserted when user enables
data verification (VerifyEn=’1’).

After receiving the final data of a packet, the current value of rCurTrnSize and rExpPattCnt
are loaded the latch registers of the session, controlled by rSSIDLat. There are 16 latch
registers to store the information of 16 sessions. Similarly, the failure information of the first
failure data is latched to one of 16 session registers when fail flag is asserted. The failure
information consists of failure position (RdRailPos), expected value (ExpPatt), and received
value (RdPatt).

UserDataError
Besides, the error monitoring logic reads UserDataError when receiving the final data of
packet. If UserDataError is asserted, UserErrorInt of the active session will be asserted. The
error is cleared when the new test loop is run (PattStart=’1’).

After finishing receiving final data of packet, State machine returns to the first state to read the
next session number from MetaData and read the received data of the next session from
UserData.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 21

3 CPU Firmware (FPGA)

Figure 3-1 Message on the console in initialization process

CPU firmware in the reference design is implemented on bare-metal OS to simply handle the
hardware. After booting the test system, the system starts initialization process, as shown in
Figure 3-1. User needs to configure network parameters and test parameters before starting
initialization. More details of the initialization process are described as follows.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 22

1) CPU reads UDP10GRx-IP and LL10GEMAC-IP information and displays on the console.

After that, CPU waits until Ethernet connection is ready by monitoring Linkup status
(EMAC_STS_REG[0]). This step is finished when EMAC_STS_REG[0]=’1’ (Linkup).

2) The parameters for setting UDP10GRx-IP are divided into two types, i.e., common
parameters which are shared parameters for all sessions and session parameters which
are independent for each session. CPU displays default value of common parameters on
the consoles, i.e., IP Mode (Multicast or Unicast), FPGA MAC address, and FPGA IP
address. The user selects to set the new value of common parameters or skip the setting
step by using default value. The input value of each parameter from the user is verified by
CPU. If the value is invalid, the parameter does not change the value.

3) CPU displays default value of session parameters, i.e., session enable, Target IP address,
Multicast IP address (for Multicast mode), Target port number, and FPGA port number.
The session order for displaying parameters is Session#0, #1, …, and #15. The user
selects to set the new value for session parameters or skip the setting step by using
default value, similar to the common parameters. After that, the input is verified by CPU.

4) CPU sets all common parameters and session parameters to the hardware register as
follows.
UDP_SML/H_REG = FPGA MAC address
UDP_SIP_REG = FPGA IP address
UDP_MCEN_REG = IP Mode
UDP_SPN0-15_REG = FPGA port number
UDP_DPN0-15_REG = Target port number
UDP_DIP0-15_REG = Target IP address
UDP_MIP0-15_REG = Multicast IP address
UDP_SSEN_REG = Session enable

5) CPU waits until the initialization process is finished by monitoring UDP_SSAC_REG.
UDP_SSAC_REG is equal to UDP_SSEN_REG after all sessions finish the initialization.
Finally, main menu is displayed on the console. There are three test operations in the main
menu which are described as follows.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 23

3.1 Display parameters

This menu displays the current value of all parameters. The common parameters are
displayed on the console before displaying the session parameters. After that, the session
parameters of the active session are displayed. The sessions that is inactive shows
“DISABLE” message.

The step to display parameters is as follows.
1) Read all network parameters from each variable in firmware.
2) Display all common parameters, i.e., IP Mode, FPGA MAC address, and FPGA IP

address.
3) Read the session active flag. If the session is active, the session parameters are displayed,

i.e., Target IP address, Multicast IP address (when running in Multicast mode), Target port
number, and FPGA port number. Otherwise, DISABLE is displayed.

3.2 Set parameters

This menu is applied to change some input parameters of UDP10GRx-IP. To set common
parameters, all sessions must be disabled and then re-enabled. To set session parameters,
only the modified session must be disabled and then re-enabled. After finishing setting
parameters, UDP10GRx-IP begins the initialization process. UDP_SSAC_REG is monitored
until the initialization is completed.

The step to set parameter to UDP10GRx-IP is as follows.
1) Display all common parameters on the console.
2) Skip to the next step if the user confirms to use default value. Otherwise, the menu for

setting common parameters is displayed. CPU receives the value of each common
parameter from the user and validate it. If the input is invalid, the parameter does not
change the value. When common parameter is updated, UDP_SSEN_REG is set to 0 to
disable all sessions.

3) The menu for setting session parameters is displayed. There are sixteen sessions in the
demo which can be assigned by the user independently. Similar to common parameters,
CPU receives the parameter from the console and validate it. If the input is invalid, the
parameter does not change the value. Only the session which updates the parameters
must be disabled by setting UDP_SSEN_REG to ‘0’.

4) CPU waits until the session is disabled by comparing UDP_SSAC_REG =
UDP_SSEN_REG.

5) CPU sets all parameters to UDP10GRx-IP, similar to step 4) of the initialization process.
6) CPU asserts SSEnable of the session that needs to change parameter to ‘1’ to begin the

initialization process.
7) CPU waits until the session finishes the initialization process (UDP_SSAC_REG =

UDP_SSEN_REG).

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 24

3.3 Receive data test

This menu is designed to set the parameters for data verification module. At least one session
must be enabled before running this menu. User sets total number of received data after
finishing the operation. Also, the user sets data verification enable flag which are shared
parameters for all sessions. When enabling data verification, the user sets the start value of
32-bit incremental pattern for each active session independently. The operation is cancelled
when some inputs are invalid.

The step to run receive data test is as follows.
1) CPU confirms that at least one session is enabled. Otherwise, the operation is cancelled.
2) CPU receives total received data size and data verification enable flag from the user. The

operation is cancelled if some inputs are invalid.
3) Skip this step if data verification is disabled. Otherwise, the menu to set start pattern for all

active sessions is displayed. The input value is set to USER_PAT0-15_REG. The
operation is cancelled if the input is invalid.

4) Start UserDataVer operation by setting USER_CMD_REG=1 (disable data verification) or
3 (enable data verification).

5) Display recommended parameter for running test application on PC, processed from the
current parameters.

6) Wait until IP receives the first data on some active sessions (current received size of some
active sessions (USER_RXLENL0-15_REG) is not equal to 0). After that, CPU starts timer
to measure processing time.

7) Wait until the receive operation of all operating session is completed. Each session can
complete by two ways. First, the received data size (USER_RXLENL/H0-15_REG) does
not change more than 100 msec. Second, total data of the session is received. During
receiving data, CPU displays current number of received data on the console every
second by reading USER_RXLENL/H0-15_REG.

8) Stop timer. Check error status by reading USER_ERR0_7_REG/USER_ERR8_15_REG.
If some errors are asserted to ‘1’, the error message is displayed.

9) Calculate performance and display the result. Also, Rx latency time of UDP10GRx-IP and
UDPRx16SS2AXI4 are read from UDPRX_TIME_REG and UDP2AXI_TIME_REG and
then displayed on the console.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 25

3.4 Function list in User application

This topic describes the function list to run UDP10GRx-IP operation.

void init_param(void)

Parameters None

Return value None

Description Run for setting parameter, as described in topic 3.2. During running,
show_cm_param, input_cm_param, show_ss_param, input_ss_param,
and show_param are called.

void input_cm_param(void)

Parameters None

Return value None

Description Receive common parameters from user, i.e., IP mode, FPGA MAC
address, and FPGA IP address. When the input is valid, the parameters
are updated. Otherwise, the value does not change.

void input_ss_param(int ss_number)

Parameters ss_number: session number to set parameter, valid from 0 to 31.

Return value None
Description Receive session parameters from user, i.e., SSEnable, Target IP,

Multicast IP (for Multicast mode), Target port number, and FPGA port
number. When the input is valid, the parameters are updated. Otherwise,
the value does not change. The session for setting parameter is defined
by ss_number.

void show_cursize(void)

Parameters None

Return value None

Description Read USER_RXLENL0-15_REG and USER_RXLENH0-15_REG and
then display the current number of received data in Byte, KByte, MByte,
or GByte unit of all sessions.

void show_interrupt(void)

Parameters None

Return value None

Description Read error interrupt status from USER_ERR0_7_REG and
USER_ERR8_15_REG. Display the session number that has the error
asserted from the IP on the console.

void show_cm_param(void)

Parameters None

Return value None

Description Display the current value of the common parameters that is set to
UDP10GRx-IP, i.e., IP Mode, FPGA MAC address, and FPGA IP
address.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 26

void show_param(void)

Parameters None

Return value None

Description Display the current value of all parameters that is set to UDP10GRx-IP
by calling show_cm_param to show common parameters and
show_ss_param to show session parameters.

void show_result(void)

Parameters None

Return value None

Description Read USER_RXLENL0-15_REG and USER_RXLENH0-15_REG to
display total number of received data. Read timer parameters (timer_val
and timer_upper_val) and calculate total time usage to display in usec,
msec, or sec unit. After that, transfer performance is calculated and
displayed on MB/s unit. Finally, UDPRX_TIME_REG and
UDP2AXI_TIME_REG are read to show latency time of UDP10GRx-IP
and UDPRx16SS2AXI4 module.

void show_ss_param(int ss_number, int show_mode)

Parameters ss_number: The session number for displaying, valid from 0 to 15.
show_mode: 0 – Display all parameters when ss_number is active status
 1 – Display all parameters without checking active status

Return value None

Description Display the current value of the session parameters that is set to
UDP10GRx-IP such as Target IP address and Target port number when
the session, defined by ss_number, is active or show_mode is equal to 1
(SHOW_ALL).

void show_verfail(void)

Parameters None

Return value None

Description Read failed flag from USER_ERR0_7_REG and
USER_ERR8_15_REG. If the failed flag of which session is asserted,
display the failure information by reading the register of error session,
i.e., USER_RDFAILL/H0-15_REG, USER_EXPPATL/H0-15_REG, and
USER_RDPATL/H0-15_REG to show failure position, expected data,
and read data respectively.

int udp_recv_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Receive data test following description in topic 3.3

void wait_ethlink(void)

Parameters None

Return value None

Description Read EMAC_STS_REG[0] and wait until linkup status is detected.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 27

4 Test Software on PC

“trans_udp_multi” is an application on PC for sending or receiving UDP data. The application
supports to transfer up to 16 sessions at the same time. The parameters are divided into two
groups, i.e., common parameters which are shared for all sessions and session parameters
which are independent for each session. Therefore, the application is designed to receive the
inputs in two steps following the parameter type – common parameters and session
parameters.

Figure 4-1 trans_udp_multi application to input common parameters

First, the user sets common parameters which consists of six parameters and one optional
parameter, as shown in Figure 4-1. If some parameters are not valid, the application is
cancelled with displaying error message. More details of the first parameter group are
described as follows.

1) SSNum : Number of transferring sessions, valid from 1 to 16
2) IPMode : u – Unicast Mode

 m – Multicast Mode
3) Dir : t – PC sends data to FPGA
4) ByteLen : Total transfer length in byte unit.
5) PkSize : Packet size for sending, valid from 1-8972.
6) Pattern : 0 – Generate dummy data in transmit mode

 1 – Generate 32-bit incremental data in transmit mode
7) Timeout (optional): Timeout during transferring data in milli seconds unit.

 Default value when user does not input this parameter is 100.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 28

Figure 4-2 trans_udp_multi application to input session parameters

Next, the console for receiving the session parameters is displayed after all common
parameters from user are valid. The message for receiving session parameters when running
in Unicast mode is different from Multicast mode. Figure 4-2 shows the message when sending
data for one session in Unicast mode and Multicast mode. The details of each parameter are
described as follows.

In Unicast mode,
1) FPGAIP : IP address setting on FPGA
2) FPGAPort : Port number of FPGA
3) PCIP : IP address setting on PC
4) PCPort : PC port number for sending data
5) StartPatt : Start value of 32-bit incremental data for sending in the test

In Multicast mode,
1) McastIP : Multicast IP address
2) McastPort : Multicast port number
3) TxPort : PC port number for transmitting data
4) StartPatt : Start value of 32-bit incremental data for sending in the test

When many sessions are selected, the message for receiving the next session parameters is
displayed after finishing the first session setting. Data transmission begins after finishing
setting all session parameters.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 29

The details when the application is run for transmitting data are described as follows.

1) Get common parameters from user and verify that the input is valid. The operation is
cancelled when some parameters are invalid.

2) Get session parameters from user and verify that the input is valid. When many sessions
are run, this step is repeated to get the next session parameters until completing all
sessions. The first session is Session#0. The operation is cancelled when some
parameters are invalid.

3) Create the socket and then set properties of transmit buffer.
4) Set IP address and port number from the user parameters to the socket.
5) This step is run following IP mode.

a) In Unicast mode, the application sends ARP request packet.
b) In Multicast mode, the application sends IGMP Membership Report to Join Group.

6) When many sessions are run, step (3)-(5) are repeated to create socket for every session.
7) Allocate memory to be transmit buffer in the application.
8) Create child thread for sending data of each session. Therefore, the number of child

threads is equal to the number of sessions. After that, child thread sends the data with or
without filling test data to the buffer, depending on [Pattern] parameters from the user. If
Pattern=1, the send buffer is filled by 32-bit incremental pattern, starting by [StartPatt] input.
Otherwise, the send buffer is not filled.

At the same time, the main thread checks transfer status of every child thread until all
threads are completely operated. During checking status, the main thread displays current
transfer size of each session on the console every second.

9) After finishing sending the data in every session, the application calculates and displays
performance with total transfer size as a test result.

10) Close the socket, kill the child thread, and free memory before finishing the application.

dg_udp10grx_16ss_refdesign_xilinx_en.doc

4-Jul-23 Page 30

5 Revision History

Revision Date Description

1.0 23-Nov-21 Initial version release

