
dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23

UDP10GRx IP reference design

1 Introduction ... 1
2 Hardware overview .. 3

2.1 Xilinx Transceiver (PMA for 10GBASE-R) .. 4
2.2 LL10GEMAC... 4
2.3 PMARstCtrl ... 4
2.4 UDP10GRx ... 4
2.5 CPU and Peripherals .. 5

2.5.1 AsyncAxiReg .. 6
2.5.2 UserReg ... 8

3 CPU Firmware (FPGA) ... 13
3.1 Display parameters ... 15
3.2 Set parameters ... 15
3.3 Receive data test .. 16
3.4 Function list in User application .. 17

4 Test Software on PC ... 20
5 Revision History .. 23

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 1

UDP10GRx IP reference design
Rev1.2 4-Jul-23

1 Introduction

Figure 1-1 Low latency solution

When FPGA is applied for implementing UDP/IP data processor, the general solution is designed
by using CPU system running UDP/IP stack as shown in the left side of Figure 1-1. Link layer and
physical layer are implemented by using 10/25G Ethernet Subsystem which is Xilinx IP core.
Though this solution is flexible for many applications on CPU, the result shows much latency time
for processing both UDP/IP stack and the application.

To achieve the lowest latency solution, the design on the right side of Figure 1-1 is purposed, the
full hardware logic system for processing UDP/IP stack. This solution is fit with the time-sensitive
application that needs to implement the user logic by the hardware logic for receiving UDP data
with UDP10GRx-IP. UDP10GRx-IP designs UDP/IP stack with ultra-low latency. Also, it is
recommended to connect with the low latency 10G Ethernet MAC IP (LL10GEMACIP) to achieve
the lowest latency system. The low-layer of hardware (PMA layer) is provided by Xilinx as a free IP
core.

The UDP payload data, extracted from the valid packet, is forwarded to the user logic via data
interface. There are four data control signals for transferring up to four-session data in
UDP10GRx-IP.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 2

Figure 1-2 Test logic for UDP10GRx-IP

To show UDP/IP stack implementation by UDP10GRx-IP with achieving low latency time, the
simple test logic is designed, as shown in Figure 1-2. Data verification modules (UserDataVer) are
connected with the user interface of UDP10GRx-IP for verifying the data of four sessions. Test
software (trans_udp_multi.exe) which runs on the PC generates UDP/IP packet of four sessions
via 10Gb Ethernet. DG LL10GEMAC-IP and Xilinx 10GbE PMA (BASE-R) implement the
low-level interface module for transferring Ethernet packet with UDP10GRx-IP. The latency time
of received data interface from UDP10GRx-IP is measured by using the timer.

CPU system is included for user interface via Serial console to setting the test parameters. Also,
the test result and the progress of test operation are returned to CPU for displaying on the console.
More details of the demo are described as follows.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 3

2 Hardware overview

Figure 2-1 UDP10GRxTest Block Diagram

The test system includes CPU for easy user interface and flexible test. Test parameters such as
network parameters and transfer size are set by user. Also, the current status of the test system
such as current transfer size can be monitored on Serial console. To connect the hardware with
CPU system, AXI4-Lite bus standard must be implemented. LAxi2Reg is the interface module to
convert AXI4-Lite interface to be the user interface of UDP10GRx module. Also, AsyncAXIReg is
included to be asynchronous module between CPU system clock (CpuClk) and UDP10GRx
interface clock (MacRxClk).

The user interface of UDP10GRx is divided to two interfaces - control interface and data interface.
In this reference design, the control interface is controlled by CPU system via Register Files while
the data interface is connected to UserDataVer module for verifying the received data from
UDP10GRx module. Another side of UDP10GRx-IP is connected to 10G Ethernet MAC controller
(LL10GEMAC-IP) by using 32-bit AXI4 stream interface (AXI4-ST) to achieve the lowest latency
time. Tx interface and Rx interface of LL10GEMAC-IP are run in different clock domain -
MacTxClk and MacRxClk. The lowest layer module is PMA module which implements by Xilinx
transceiver to support 10GBASE-R interface. PMARstCtrl is the module to control reset sequence
of Xilinx Transceiver.

The target to communicate with the test system is TestPC which runs Test application
(trans_udp_multi.exe, provided by Design Gateway) to send UDP payload data up to many
sessions at the same time. Test application can be set to transfer by Multicast mode or Unicast
mode.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 4

2.1 Xilinx Transceiver (PMA for 10GBASE-R)

PMA IP core for 10Gb Ethernet (BASE-R) can be generated by using Vivado IP catalog. In
FPGA Transceivers Wizard, the user uses the following settings.

• Transceiver configuration preset : GT-10GBASE-R

• Encoding/Decoding : Raw

• Transmitter Buffer : Bypass

• Receiver Buffer : Bypass

• User/Internal data width : 32

The example of Transceiver wizard in Ultrascale model is described in the following link.

https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html

2.2 LL10GEMAC

The IP core by Design Gateway implements low-latency EMAC and PCS logic for 10Gb
Ethernet (BASE-R) standard. The user interface is 32-bit AXI4-stream bus. Please see more
details from LL10GEMAC-IP datasheet on our website.
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en.pdf

2.3 PMARstCtrl

When the buffer inside Xilinx Transceiver is bypassed, the user logic must control reset signal
of Tx buffer and Rx buffer. The module is designed by state machine to run following step.
(1) Assert Tx reset of the transceiver to ‘1’ for one clock cycle.
(2) Wail until Tx reset done, output from the transceiver, is asserted to ‘1’.
(3) Finish Tx reset sequence and de-assert Tx reset to allow the user logic beginning Tx

operation.
(4) Assert Rx reset to the transceiver.
(5) Wait until Rx reset done is asserted to ‘1’.
(6) Finish Rx reset sequence and de-assert Rx reset to allow the user logic beginning Rx

operation.

2.4 UDP10GRx

UDP10GRx-IP is the IP core provided by Design Gateway to implement the UDP/IP stack and
offload engine for the low latency solution. It extracts UDP payload data from Ethernet packet
that is transmitted by EMAC and then forwards to user. Up to four sessions are supported to
receive several data types at the same time. More details of UDP10GRx-IP are described in
UDP10GRx-IP datasheet, provided on our website.
https://dgway.com/products/IP/Lowlatency-IP/dg_udp10grxip_data_sheet_xilinx_en.pdf

https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en.pdf
https://dgway.com/products/IP/Lowlatency-IP/dg_udp10grxip_data_sheet_xilinx_en.pdf

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 5

2.5 CPU and Peripherals

32-bit AXI4-Lite is applied to be the bus interface for the CPU accessing the peripherals such
as Timer and UART. To control and monitor the test system, the control and status signals are
connected to register for CPU access as a peripheral through 32-bit AXI4-Lite bus. CPU
assigns the different base address and the address range to each peripheral for accessing
one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. Therefore, the hardware logic must be designed to support AXI4-Lite bus standard
for CPU write access and read access. LAxi2Reg module is designed to connect the CPU
system as shown in Figure 2-2.

Figure 2-2 LAxi2Reg block diagram

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32-bit data bus size (similar to
AXI4-Lite data bus size). Besides, AsyncAxiReg includes asynchronous logic to support clock
domain crossing between CpuClk domain and MacRxClk domain.

UserReg includes the register file of the parameters and the status signals of test logics. Both
data interface and control interface of UDP10GRx-IP are also connected to UserReg. More
details of AsyncAxiReg and UserReg are described as follows.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 6

2.5.1 AsyncAxiReg

Figure 2-3 AsyncAxiReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. The
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e., Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-3. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock domain crossing registers. Similarly, Read
control I/F of AXI4-Lite bus are latched and transferred to be Read register interface. While
the returned data from Register Read I/F is transferred to AXI4-Lite bus by using clock
domain crossing registers. In register interface, RegAddr is shared signal for write and read
access. Therefore, it loads the address from LAxiAw for write access or LAxiAr for read
access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-4.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 7

Figure 2-4 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to enable 4-byte data. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data is returned after receiving the read request. The slave detects RegRdReq
asserted to start the read transaction. During read operation, the address value (RegAddr)
does not change until RegRdValid is asserted to ‘1’. Therefore, the address can be used
for selecting the returned data by using multiple levels of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 8

2.5.2 UserReg

Figure 2-5 UserReg block diagram

The logic inside UserReg consists of two operations, i.e., Register interface (Address decoder,
RegFile, and RegMux) and Data pattern verification (UserDataVer).

Register block decodes the address which is requested from AsyncAxiReg and then selects
the active register for write or read transaction. UserDataVer block reads and verifies 32-bit
data from UDP10GRx-IP following AXI4-Stream interface standard. More details of Register
block and UserDataVer are described as follows.

Register Block
The address range assigned in UserReg is split into three areas, described as follows.

• 0x0000 – 0x05FF: UDP10GRx-IP (Write access)

• 0x0600 – 0x07FF: UserDataVer (Write access)

• 0x0800 – 0x0FFF: UDP10GRx-IP and UserDataVer (Read access)

Address decoder decodes the upper bit of RegAddr for selecting the active hardware that is
UDP10GRx-IP or UserDataVer. The register file inside UserReg is 32-bit bus size. Therefore,
write byte enable (RegWrByteEn) is not applied in the test system and the CPU uses 32-bit
pointer to set the hardware register.

To read register, multiplexer is designed to select the read data to return to CPU by using the
address. The lower bit of RegAddr is fed to the submodule to select the active data. While the
upper bit is applied to select the returned data from the submodule. Totally, the latency of read
data is equal to two clock cycles. Therefore, RegRdValid is created by RegRdReq with
asserting two D Flip-flops. More details of the address mapping within UserReg module are
shown in Table 2-1

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 9

Table 2-1 Register map Definition

Address Register Name Description

Wr/Rd (Label in the udp10grxtest.c”)

BA+0x0000 – BA+0x05FF: UDP10GRx-IP (Write access only)

More details of UDP10GRx-IP signals are described in UDP10GRx-IP datasheet

BA+0x0000 – BA+0x01FF: Common parameters and control of UDP10GRx-IP

BA+0x0000 Session Enable Reg [3:0]: Input to be Session enable

(SSEnable[3:0] or UDP10GRx-IP) UDP_SSEN_REG

BA+0x0004 Multicast Enable Reg [0]: Input to be Multicast enable

(McastEn of UDP10GRx-IP) UDP_MCEN_REG

BA+0x0040 Source MAC Address (Low) Reg [31:0]: Input to be Source MAC Address

(SrcMacAddr[31:0] of UDP10GRx-IP) UDP_SML_REG

BA+0x0044 Source MAC Address (High) Reg [15:0]: Input to be Source MAC Address

(SrcMacAddr[47:32] of UDP10GRx-IP) UDP_SMH_REG

BA+0x0048 Source IP Address Reg [31:0]: Input to be Source IP Address

(SrcIPAddr[31:0] of UDP10GRx-IP) UDP_SIP_REG

BA+0x0200 – BA+0x02FF: Session parameters of UDP10GRx-IP

BA+0x0200 Source Port Number Reg [15:0]: Input to be source port number#0

(SrcPort0 of UDP10GRx-IP) UDP_SPN0_REG

BA+0x0204 Target Port Num Reg [15:0]: Input to be target port number#0

(DstPort0 of UDP10GRx-IP) UDP_DPN0_REG

BA+0x0208 Target IP Address Reg [31:0]: Input to be target IP address#0

(DstIPAddr0 of UDP10GRx-IP) UDP_DIP0_REG

BA+0x020C Multicast IP Address Reg [31:0]: Input to be multicast IP address#0
(McastIPAddr0 of UDP10GRx-IP) UDP_MIP0_REG

BA+0x0220-

BA+0x022F

Session#1 parameters

(UDP_SPN1_REG –

UDP_MIP1_REG)

0x0220: SrcPort1 of UDP10GRx-IP

0x0224: DstPort1 of UDP10GRx-IP

0x0228: DstIPAddr1 of UDP10GRx-IP

0x022C: McastIPAddr1 of UDP10GRx-IP

BA+0x0240-

BA+0x024F

Session#2 parameters

(UDP_SPN2_REG –

UDP_MIP2_REG)

0x0240: SrcPort2 of UDP10GRx-IP

0x0244: DstPort2 of UDP10GRx-IP

0x0248: DstIPAddr2 of UDP10GRx-IP

0x024C: McastIPAddr2 of UDP10GRx-IP

BA+0x0260-

BA+0x026F

Session#3 parameters

(UDP_SPN3_REG –

UDP_MIP3_REG)

0x0260: SrcPort3 of UDP10GRx-IP

0x0264: DstPort3 of UDP10GRx-IP

0x0268: DstIPAddr3 of UDP10GRx-IP

0x026C: McastIPAddr3 of UDP10GRx-IP

BA+0x0600 – BA+0x07FF: Input signals for UserReg (Write access only)

BA+0x0600 User Command Reg [0]: Start flag of UserDataVer. Set to ‘1’ to start the operation. This flag is

auto-cleared. This signal is also applied to clear the timer to check latency

time of UDP10GRx-IP.

[1]: Verification enable. ‘0’: Disable data verification, ‘1’: Enable data

verification

(USER_CMD_REG)

BA+0x0604 User Clear Reg [0]: Reset flag to clear error signal. Set to ‘1’ to clear error signals inside
UserDataVer. This flag is auto-cleared. (USER_CLR_REG)

BA+0x0680-

BA+0x068F

User Start Pattern0-3 Reg [31:0]: Start value of 32-bit incremental pattern for verifying data in

Session#0-#3 of UserDataVer.

0x680: SS#0, 0x684: SS#1, 0x688: SS#2, and 0x68C: SS#3.

(USER_PAT0-3_REG)

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 10

Address Register Name Description

Wr/Rd (Label in the udp10grxtest.c”)

BA+0x0800 – BA+0x0FFF

Output signals of UDP10GRx-IP outputs, UserReg, and UserDataVer (Read access only)

BA+0x0800 – BA+0x09FF: Output signals of UDP10GRx-IP and UserReg (Read access only)

BA+0x0800 EMAC Status Reg [0]: Ethernet MAC Link up status. ‘0’-Link down, ‘1’-Link up.

(Linkup of LL10GEMAC-IP) EMAC_STS_REG

BA+0x0804 EMAC IP Version [31:0]: IPVersion of LL10GEMAC-IP

EMAC_VER_REG

BA+0x0808 UDP10GRx-IP Version [31:0]: IPVersion of UDP10GRx-IP

UDP_VER_REG

BA+0x080C Session Active of UDP10GRx-IP [3:0] Session active status. (‘0’: Not active, ‘1’: Active).

(SSActive[3:0] of UDP10GRx-IP) (UDP_SSAC_REG)

BA+0x0820 Test pin of UDP10GRx-IP [3:0]: Mapped to TestPin of UDP10GRx-IP

(UDP_TESTPIN0_REG)

BA+0x0840 User Error SS#0-#3 Reg [31:0] Error status of Session#0 - #3.

[0]: Data verification of SS#0 is failed. (‘0’-No error, ‘1’-Fail)

[1]: UDP10GRx-IP detects error in SS#0 (‘0’-No error, ‘1’-Error found)
[5:4]: Similar to SS#0 error (assigned to bit[1:0]), SS#1 error

[9:8]: SS#2 error, [13:12]: SS#3 error

(USER_ERR0_3_REG)

BA+0x0860 UDP10GRx Latency time Reg [31:0]: Latency time of received data of UDP10GRx-IP, measured from

start-of-packet to start-of-packet. The unit count is 3.1 ns (1/MacRxClk). (UDPRX_TIME_REG)

BA+0x0880 UDP Error Reg [7:0]: Latch value of UDPRxError when Session#0 has error.

[15:8]: Latch value of UDPRxError when Session#1 has error.

[23:16]: Latch value of UDPRxError when Session#2 has error.

[31:24]: Latch value of UDPRxError when Session#3 has error.

(UDP_ERR_REG)

BA+0x0A00 – BA+0x0BFF: Output signals of UserDataVer (Read access only)

BA+0x0C00 Current Received Size0 (Low) [31:0]: The lower 32-bit of current amount of received data from Session#0

in byte unit. (USER_RXLENL0_REG)

BA+0x0C04 Current Received Size0 (High) [15:0]: The upper 16-bit of current amount of received data from Session#0
in byte unit. (USER_RXLENH0_REG)

BA+0x0C08 Data Failure Position0 (Low) [31:0]: The lower 32-bit of the position of the 1st failure data from Session#0

in byte unit. (USER_RDFAILL0_REG)

BA+0x0C0C Data Failure Position0 (High) [15:0]: The upper 16-bit of the position of the 1st failure data from Session#0

in byte unit. (USER_RDFAILH0_REG)

BA+0x0C10 Expect Data0 [31:0]: Expect value of the 1st failure data when Session#0 data is failed.

(USER_EXPPAT0_REG)

BA+0x0C14 Read Data0 [31:0]: Read value of the 1st failure data when Session#0 data is failed.

(USER_RDPAT0_REG)

BA+0x0C20-

BA+0x0C37

USER_RXLENL1_REG –

USER_RDPAT1_REG

Similar to BA+0x0C00 – BA+0C14, the registers are applied for Session#1

data.

BA+0x0C40-

BA+0x0C57

USER_RXLENL2_REG –

USER_RDPAT2_REG

Similar to BA+0x0C00 – BA+0C14, the registers are applied for Session#2

data.

BA+0x0C60-

BA+0x0C77

USER_RXLENL3_REG –

USER_RDPAT3_REG

Similar to BA+0x0C00 – BA+0C14, the registers are applied for Session#3

data.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 11

User Data Verification

UserDataVer receives the data from UDP10GRx-IP which has four sessions. The data is
verified when verification enable is asserted by user. Four-session data shares the same data
bus and valid signal, separated by 2-bit session number. Each session has its own initial
value, assigned by InitPatt, which is loaded when Start signal (PattStart) is asserted. The test
operation begins when Start signal is asserted.

Figure 2-6 UserDataVer

As shown in Figure 2-6, UserDataVer has three operations, i.e., Error detection (1) to detect
the error from UDP10GRx-IP, Data calculating (2) to calculate total amount of valid data, and
Verification (3) to verify the received data.

ErrorDetect (1) reads the error output from UDP10GRx-IP (RxDataError) when the end of
packet is received (RxDataEOP=’1’ and RxDataValid=’1’). If the error is detected, the interrupt
flag (RxErrorInt) is asserted to ‘1’ and RxDataError is latched (RxErrorLat). The error interrupt
and status have four sets for storing the status of each session. After the user asserts the
signal to clear interrupt (RxIntClr), the error interrupt and status will be cleared. The session
number from the IP (RxSSNo) is loaded the latch register for decoding the active session for
each received packet. For error detection, the latched session number (rSSIDLat) is applied
to load the error status to one of four latch register sets.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 12

DataCal (2) includes the logic to calculate total amount of received data from UDP10GRx-IP
(TrnSizeCal). Valid signal of received data (RxDataValid) and byte enable (RxDataByteEn)
are monitored to check the number of valid bytes in each cycle that can be equal to 1 – 4
bytes. After that, rCurTrnSize which shows total amount of received data is fed to Latch
register which has four sets for four sessions. Only one of four sets is loaded following the
active session number. Besides, the output of latch register is returned to TrnSizeCal to be
the start value when the new packet is received. TrnSizeCal loads the latest value from the
active session for updating the amount of received data. Similarly, there is the logic to
calculate expected data which is designed to be incremental pattern (PattCal). The operation
of PattCal is the same as TrnSizeCal, but the start value of each session can be set by user
via InitPatt signal.

Verification (3) has the decoder (ExpDEC) to calculate the real expected data following the
byte offset. The byte offset is the offset value when the previous data is not aligned to 32-bit
unit. Therefore, the next expected data will mix value between two 32-bit values. After that,
the result is fed to compare with the received data (RxData). Fail flag (RdFail) is asserted if
the received data is not equal to the expected data and user enables verification flag
(VerifyEn). Also, four sets of latch registers are included to store the error information of four
sessions, i.e., the expected value (ExpPatt), the received value (RdPatt), and the error
position in byte unit (RdFailPos).

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 13

3 CPU Firmware (FPGA)

Figure 3-1 Message on the console in initialization process

In reference design, CPU firmware is implemented as bare-metal OS for simply handling with
the hardware. After the test system is run, the hardware starts the initialization process, as
shown in Figure 3-1 There are five steps to set up the hardware before starting initialization
process, described in more details as follows.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 14

1) CPU reads UDP10GRx-IP and LL10GEMAC-IP information and displays on the console.

After that, CPU waits until Ethernet link is established (EMAC_STS_REG[0]=’1’). After
that, continue to the next step.

2) The parameters for setting UDP10GRx-IP are divided into two types, i.e., common
parameters which are shared parameters for all sessions and session parameters which
are set to each session individually. CPU displays default value of common parameters on
the consoles, i.e., IP Mode (Multicast or Unicast), FPGA MAC address, and FPGA IP
address. The user selects to set the new value of common parameters or skip the setting
step by using default value. After that, the input value of each parameter from the user is
verified by CPU. If the input value is invalid, the parameter does not change the value.

3) CPU displays default value of session parameters, i.e., session enable, Target IP address,
Multicast IP address, Target port number, and FPGA port number. The session order for
displaying parameters is session#0, #1, #2, and #3. Similar to common parameters, the
user selects to set the new value for session parameters or skip the setting step by using
default value. After that, the input is verified by CPU.

4) CPU sets all common parameters and session parameters to the hardware register as
follows.
UDP_SML/H_REG = FPGA MAC address
UDP_SIP_REG = FPGA IP address
UDP_MCEN_REG = IP Mode
UDP_SPN0-3_REG = FPGA port number
UDP_DPN0-3_REG = Target port number
UDP_DIP0-3_REG = Target IP address
UDP_MIP0-3_REG = Multicast IP address
UDP_SSEN_REG = Session enable

5) CPU waits until the initialization process is finished by monitoring UDP_SSAC_REG. After
all sessions finish the initialization, UDP_SSAC_REG must be equal to UDP_SSEN_REG.
Finally, main menu is displayed on the console. There are three test operations in the main
menu which are described as follows.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 15

3.1 Display parameters

This menu is designed to display the current value of all parameters. All common parameters
and the session parameters of active session are displayed on the console. While the inactive
session shows only DISABLE status.

The step to display parameters is as follows.
1) Read all network parameters from each variable in firmware.
2) Display all common parameters, i.e., IP Mode, FPGA MAC address, and FPGA IP

address.
3) Check the session active flag of each session. If the session is active, the session

parameters are displayed, i.e., Target IP address, Multicast IP address (when running in
Multicast mode), Target port number, and FPGA port number.

3.2 Set parameters

This menu is designed to change some input parameters of UDP10GRx-IP. To set common
parameters, all sessions must be disabled and then re-enabled. To set session parameters,
only the modified session must be disabled and then re-enabled. After finishing setting
parameters, UDP10GRx-IP begins the initialization process. UDP_SSAC_REG is monitored
until the initialization is completed.

The step to set parameter to the UDP10GRx-IP is as follows.
1) Display all common parameters on the console.
2) Skip to the next step if the user confirms to use default value. Otherwise, the menu for

setting common parameters is displayed. CPU receives common parameter value from
the user and then validate it. If the input is invalid, the parameter does not change the
value. When common parameter is updated, UDP_SSEN_REG is set to 0 to disable all
sessions.

3) The menu for setting session parameters is displayed. There are four sessions in the
demo which can be set individually. Similar to common parameters, CPU receives the
parameter from the console and validate it. If the input is invalid, the parameter does not
change the value. Only the session which updates the parameters must be disabled by
setting UDP_SSEN_REG to ‘0’.

4) CPU waits until the session is disabled by comparing UDP_SSAC_REG =
UDP_SSEN_REG.

5) CPU sets all parameters to UDP10GRx-IP, similar to step 4) of the initialization process.
6) CPU asserts SSEnable of the session that needs to change parameter to ‘1’ to begin the

initialization process.
7) CPU waits until the session finishes the initialization process by comparing

UDP_SSAC_REG = UDP_SSEN_REG.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 16

3.3 Receive data test

This menu is designed to set the parameters for data verification module. At least one session
must be active before running this menu. User sets total number of received data to be the
expected value for comparing when the operation is finished. Also, the user sets data
verification enable flag which are shared parameters for all sessions. When enabling data
verification, the user can set the start value of 32-bit incremental pattern for each active
session independently. The operation is cancelled when some inputs are invalid.

The step to run receive data test is as follows.
1) CPU confirms that at least one session is enabled. The operation is cancelled if no

session is enabled.
2) CPU receives total amount of received data and data verification enable flag from the user.

The operation is cancelled if some inputs are invalid.
3) Skip to step 4) if data verification is disabled. Otherwise, the menu to set start value of test

data for all active sessions are displayed. The input value is set to USER_PAT0-3_REG.
The operation is cancelled if the input is invalid.

4) Start UserDataVer operation by setting USER_CMD_REG=1 (disable data verification) or
3 (enable data verification).

5) Display the recommended parameters which read from the variable of running test
application on PC.

6) Wait until at least one data of any active session is received by IP. The current received
size of some sessions (USER_RXLENL0-3_REG) is not equal to 0. After that, CPU starts
timer to measure operating time.

7) Wait until the receive operation of all operating session is completed. Each session is
finished by two ways. First, the received data size (USER_RXLENL/H0-3_REG) does not
change more than 100 msec. Second, total data of all active session are received. During
receiving data, CPU displays current amount of received data on the console every
second by reading USER_RXLENL/H0-3_REG.

8) Stop timer. Check error interrupt (USER_ERR0_3_REG[1], [5], [9], and [13]) and data
verification flag (USER_ERR0_3_REG[0], [4], [8], and [12]) when data verification is
enabled. If some errors are asserted to ‘1’, the error message is displayed.

9) Calculate performance and display the result with the latency time in UDP10GRx-IP which
is read from UDPRX_TIME_REG.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 17

3.4 Function list in User application

This topic describes the function list to run UDP10GRx-IP operation.

void init_param(void)

Parameters None

Return value None

Description Run for setting parameter, as described in topic 3.2. During running,
show_cm_param, input_cm_param, show_ss_param, input_ss_param,
and show_param are called.

void input_cm_param(void)

Parameters None

Description Receive common parameters from user, i.e., IP mode, FPGA MAC
address, and FPGA IP address. When the input is valid, the parameters
are updated. Otherwise, the value does not change.

void input_ss_param(int ss_number)

Parameters ss_number: session number to set parameter, valid from 0 to 3.

Description Receive session parameters from user, i.e., SSEnable, Target IP,
Multicast IP (for Multicast mode), Target port number, and FPGA port
number. When the input is valid, the parameters are updated. Otherwise,
the value does not change. The session for setting parameter is defined
by ss_number.

void show_cursize(void)

Parameters None

Return value None

Description Read USER_RXLENL0-3_REG and USER_RXLENH0-3_REG and then
display the current number of received data in Byte, KByte, MByte, or
GByte unit of all sessions.

void show_interrupt(void)

Parameters None

Return value None

Description Read interrupt status from UDP_ERR0_3_REG and then decode the
interrupt type to display on the console.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 18

void show_cm_param(void)

Parameters None

Return value None

Description Display the current value of the common parameters that is set to
UDP10GRx-IP, i.e., IP Mode, FPGA MAC address, and FPGA IP
address.

void show_param(void)

Parameters None

Return value None

Description Display the current value of all parameters that is set to UDP10GRx-IP
by calling show_cm_param to show common parameters and
show_ss_param to show session parameters.

void show_result(void)

Parameters None

Return value None

Description Read USER_RXLENL0-3_REG and USER_RXLENH0-3_REG to
display total amount of received data. Read timer parameters (timer_val
and timer_upper_val) and calculate total time usage to display in usec,
msec, or sec unit. After that, transfer performance is calculated and
displayed on MB/s unit. Finally, USER_RXTIM_REG is read and
calculated to show latency time of UDP10GRx-IP.

void show_ss_param(int ss_number, int show_mode)

Parameters ss_number: The session number for displaying, valid from 0 to 3.
show_mode: 0 – Display all parameters when ss_number is active status
 1 – Display all parameters without checking active status

Return value None

Description Display the current value of the session parameters that is set to
UDP10GRx-IP such as Target IP address and Target port number when
the session, defined by ss_number, is active or show_mode is equal to 1
(SHOW_ALL).

void show_verfail(void)

Parameters None

Return value None

Description Read USER_ERR0_3_REG[0], [4], [8], and [12] to check verification fail
flag. If verification is failed, the failure information is displayed by reading
registers, i.e., USER_RDFAILL0-3_REG/USER_RDFAILH0-3_REG
(failure position), USER_EXPPAT0-3_REG (expected data), and
USER_RDPAT0-3_REG (read data).

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 19

int udp_recv_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Receive data test following description in topic 3.3

void wait_ethlink(void)

Parameters None

Return value None

Description Read EMAC_STS_REG[0] and wait until Ethernet link is established.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 20

4 Test Software on PC

“trans_udp_multi” is an application on PC for sending or receiving UDP data. The application
supports to transfer up to 16 sessions at the same time. The parameters are divided into two
groups, i.e., common parameters which are shared for all sessions and session parameters
which are set to each session individually. Therefore, the application has two steps to receive
two parameter groups.

Figure 4-1 trans_udp_multi application to input common parameters

First, the user sets common parameters which consists of six parameters and one optional
parameter, as shown in Figure 4-1. If some parameters are not valid, the application is
cancelled and error message is displayed. More details of the first parameter group are as
follows.

1) SSNum : Number of transferring sessions, valid from 1 to 16
2) IPMode : u – Unicast Mode

 m – Multicast Mode
3) Dir : t – PC sends data to FPGA
4) ByteLen : Total transfer length in byte unit.
5) PkSize : Packet size for sending, valid from 1-8972.
6) Pattern : 0 – Generate dummy data in transmit mode

 1 – Generate 32-bit incremental data in transmit mode
7) Timeout (optional): Timeout during transferring data in milli seconds unit.

 Default value when user does not input this parameter is 100.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 21

Figure 4-2 trans_udp_multi application to input session parameters

After all common parameters from user are valid, the console for receiving the session
parameters is displayed. The message for receiving session parameters when running in
Unicast mode is different from Multicast mode. Figure 4-2 shows the message when sending
data for one session in Unicast mode on the left window and Multicast mode on the right
window. The details of each parameter are described as follows.

In Unicast mode,
1) FPGAIP : IP address setting on FPGA
2) FPGAPort : Port number of FPGA
3) PCIP : IP address setting on PC
4) PCPort : PC port number for transmitting data
5) StartPatt : Start value of 32-bit incremental test data

In Multicast mode,
1) McastIP : Multicast IP address
2) McastPort : Multicast port number
3) TxPort : PC port number for transmitting data
4) StartPatt : Start value of 32-bit incremental test data

When many sessions are selected, the user needs to type the inputs for each session
individually. Data begins transmission after finishing to set the parameters of all sessions.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 22

The details when the application is run for transmitting data are described as follows.

1) Get common parameters from user and verify that the input is valid. The operation is
cancelled when some parameters are invalid.

2) Get session parameters from user and verify that the input is valid. When many sessions
are run, this step is repeated to get the next session parameters until completing all
sessions. The first session is session#0. The operation is cancelled when some
parameters are invalid.

3) Create the socket and then set properties of transmit buffer.
4) Set IP address and port number from the user parameters to the socket.
5) This step is run following IP mode.

a) In unicast mode, the application sends ARP request packet.
b) In multicast mode, the application sends IGMP Membership Report to Join Group.

6) When many sessions are run, step (3)-(5) are repeated to create socket for every session.
7) Allocate memory to be transmit buffer in the application.
8) Create child thread for sending data of each session. Therefore, the number of child

threads is equal to the number of sessions. After that, child thread sends the data with or
without filling test data to the buffer, depending on [Pattern] parameters from the user. If
Pattern=1, the send buffer is filled by 32-bit incremental pattern, starting by [StartPatt] input.
Otherwise, the send buffer is not filled.

At the same time, the main thread checks transfer status of every child thread until all
threads are completely operated. When the test is not completed, the main thread displays
current amount of data in each session on the console every second.

9) After finishing sending the data in every session, the application calculates and displays
performance with total transfer size to be a test result.

10) Close the socket, kill the child thread, and free memory before finishing the application.

dg_udp10grxip_refdesign_xilinx_en.doc

4-Jul-23 Page 23

5 Revision History

Revision Date Description

1.2 26-Apr-22 Update UserDataVer

1.1 30-Apr-21 - Update PMA to be raw data mode
- Update trans_multi_udp parameters

1.0 23-Jun-20 Initial version release

