dg_ftp25g_server_refdesign_en.doc m

FTP 25G Server Demo reference design
Rev1.0 15-Oct-20

1 Introduction

File Transfer Protocol (FTP) is a standard network protocol used for file transmission between a
client and server on a network. For the reliable and efficient transmission, TCP/IP is used as lower
layer.

Reference documents

1. File Transfer Protocol: http://tools.ietf.org/html/rfc959

2. File Transfer Protocol: http://www.tcpipguide.com/free/t_FileTransferProtocolFTP.htm

3. FTP Sequence: www.eventhelix.com/realtimemantra/networking/FTP.pdf

4. List of FTP commands: http://en.wikipedia.org/wiki/List_of FTP_commands

5. List of FTP server return codes: http://en.wikipedia.org/wiki/List_of FTP_server_return_codes

/- N /- ™

User
FTP Commands

- Control Connection -

FTP Replies

ﬁ ¢j> Server

DTP Data Connection

i

N J
Server-FTP

User-FTP
(Client)

Figure 1-1 Model of FTP Use

In the model described in Figure 1-1, there are two hosts with their own data storage. One is
server with shared data in the network and another is client for general users who can
authenticate themselves with sign-in protocol, normally in form of username and password. For
this protocol, two connections are required. First is control connection for FTP command and FTP
replies transferring between client and server. Second is data connection for data transmission
between two hosts.

15-Oct-20 Page 1

dg_ftp25g_server_refdesign_en.doc m

Control connection is taken responsibility by the server-protocol interpreter (Server-Pl) and the
user-protocol interpreter (User-Pl). The server-Pl listens on its own port number (Port 21 is used
since it is a well-known control port) until the connection is established. After that, Server-Pl waits
for FTP commands from User-PlI, returns standard FTP replies over the control connection in
response of the command and manages the server data transfer process (Server-DTP) when the
command needs data transfer. For client side, User-Pl is responsible to forward the command
received from the user interface to Server-Pl, wait FTP replies and manage the user data transfer
process (User-DTP) when the command needs data transfer.

Data connection is taken responsibility by the server data transfer process (Server-DTP) and the
user data transfer process (User-DTP) for sending or receiving data. The data connection
establishment can be done by Server-DTP (active mode) or User-DTP (passive mode). Passive
mode is commonly used to resolve the firewall problem on FTP client. The data connection is
established to transfer information or files between the server and the client. The data connection
is terminated after finishing information or file transferring. Both Server-DTP and User-DTP
interact with the local file system when reading or writing files.

User Interface provides the interface for a person requiring to obtain file transfer service through
the FTP software. The command is issued and the response is checked.

15-Oct-20 Page 2

dg_ftp25g_server_refdesign_en.doc m

1.1 FTP Connection Establishment and User Authentication

After user creates the connection on control port, the next process is user authentication. FTP
server can be accessed by authorized user only. The details of the connection establishment and
login process are described as follows.

Connection Establishment |

< 1) SYN, srcPort=Pc. DstPort=21

A SYNIACK, SrcPort=21, Dstportap,

User-Pl
(Client)

Server
PI

Port 21
Port Pc

=pc, DstPort=21

3) ACK, SrcPort

time ¥ Y time
Figure 1-2 Connection Establishment on Control port

According to Transmission Control Protocol (TCP), 3-Way Handshake process is the way to
establish the connection, as shown in Figure 1-2. FTP client starts sending TCP packet with SYN
flag to server on Port 21 to be the request for creating the new connection. After this packet is
detected by FTP Server, the server returns the TCP packet with SYN and ACK flag to allow the
new connection creating. Finally, client sends acknowledgement (ACK flag) to finish this process
and the control port is in ready status for server and client communication. The control port is
applied for transferring FTP commands and replies.

| Logging in |
1) FTP Res
__________"i’i‘f‘fz_o_(_sf["fﬁ_“*_a_d!)
2) FTP Command = USER
Server ~ E}_F_T_P_Response 331 (Need p n‘i (cliont)
. : —NeedPassworg) | £ | (Client)
5 o
2) FTP Command = PASS
[3) FTP Res
____9995-?_23_0_@_521'12933921
et Y time

Figure 1-3 User Authentication

As shown in Figure 1-3, after the connection was established, the authorized users have to
identify themselves with allowed username and password. For user authentication, client sends
two FTP commands which are USER command with username and PASS with password
respectively. Finally, the server replies the client with FTP response 230 to allow opening the new
session.

15-Oct-20 Page 3

dg_ftp25g_server_refdesign_en.doc m

1.2 FTP Data Connection Management by Passive Mode

This reference design implements the data connection establishment by Client (Passive mode)
which is generally used. So, only the step for running as Passive mode is described in this topic.

Some FTP commands e.g. LIST (List subdirectories or files), STOR (Store files) and RETR
(Retrieve files) must transfer information or file through the data connection. Before transferring
data in previously mentioned commands, PASV command is firstly sent from client to specify the
parameters for the data connection, i.e., IP address and port number of Server-DTP.

Data Connection Management |
1) FTP Command = PASV
2) FTP Res
pons
Server ~ | (Passive moge ,izﬂd, P . & User
£ — - Addr, Port no.ps) |
Pl [=] 4 _.:‘\T-_:-J‘l"- o P
o - ,;"___ . o
“ 3a) Command = LISTRETR/STOR
L ST T T T //
S o 4
time ¥ Y time
- ',' F—— = ————————
//: Ir\\ [
V4 :” . I
‘ 3b) Connection Establishment :
|_ _' __________________ y 7 |
| l/ |
:
2y 4 S8 |
Server B et T N ! User
4) Data Transfer p !
DTP ER 8 e E 5 prp
o ~J o
|
_ :
//I \ |
N . - |
’\ 5) Connection Termination P :
| |
I
time ¥ Y time

Figure 1-4 Data Connection Management in Passive Mode

After receiving PASV command, the server returns FTP response 227 to inform IP address and
port number of Server to Client. Assume the data port number of the server is equal to Ds.
Server-Pl instructs Server-DTP to listen on Port Ds and wait for data connection establishment.
Next, User-Pl sends FTP command which requires data transfer to Server-Pl. At the same time,
User-DTP establishes the data connection to transfer data with Server-DTP. The sequence of
Step 3a) for transferring FTP command and step 3b) for the data connection establishment can
be swapped, depending on FTP client behavior. When the data transfer is finished, the data
connection is terminated by the side transmitting data.

15-Oct-20 Page 4

dg_ftp25g_server_refdesign_en.doc m

1.3 LIST Command

The LIST command is issued to transfer information about files in the specified directory, stored
on the server 0s s i keddatatdnmectiongFASVacommearsl tisasdnt firsty to
initialize the data connection. After that, User-Pl sends LIST command to Server-Pl and
User-DTP establishes data connection at the same time. The sequence of Step 2a) for
transferring FTP command and step 2b) for the data connection establishment is possibly
swapped.

LIST Command

-
N |7
~

2a) FTP Command = LISt

3)FTP Response 125
———{Opened data connection)

User
Pl

Server
PI

Port 21
Port Pc

6) FTP Response 226 B
———{Transferring complete)

time ¥y Y time
| 2b) Connection Establishment |

a) SYN, srcPort=Dc, DstPort=Ds

_Erli,'l_S_Y_J\Hﬂ 9’_(. SrcPori=

[_)§LDStP0ﬂ=Dc
—

rt=Dc, DstPort=Ds

4) Data Transfer (List of files) >

5) Connection Termination | __________

User
DTP

Server
DTP

Port Ds
Port Dc

___a)fi'l_'”_A_c_K, §rcport=[)5 DstPort=p
— % U =Dc |
T

b) ACK, srcPort=D¢, DstPort=Ds

rt=Dc, DstPol‘t"’Dsi

¢) FIN|ACK, SrcPo ,

____d_} f_C_K_, _S:c_P_ort=Ds, DstPort=

timey Y time
Figure 1-5 LIST Command Operation

For the server side, after the data connection was established, Server-PI returns response 125 for
LIST command and Server-DTP returns information of files or the list of files to client. When the
data transfer is finished, Server-DTP terminates the data connection. Finally, Server-Pl sends
response 226 to complete LIST command operation.

15-Oct-20 Page 5

dg_ftp25g_server_refdesign_en.doc m

1.4 STOR Command

The STOR command is issued by client when the user requires to upload a copy of a file to store
on the servero0s storage. The cihgiwighthe STOR commahe s
If the file already exists on the server, it is replaced by the uploaded file. Otherwise, the uploaded
file is created. Next, the server decodes file name to be a parameter to store a file. After that, data
transmission begins, similar to the operation of LIST command. Data transfer direction is opposite
from LIST and RETR command by sending from User-DTP (client) to Server-DTP (server).
User-DTP terminates the data connection after finishing all data transmission.

STOR Command |

1) Command = PASV

2a) FTP Command = STOR

3)FTP Response 125
———°Pened data connection)

User
Pl

Server
PI

Port 21
Port Pc

6) FTp Response 226 >
——{Transferring complete)

time ¥y Y time
| 2b) Connection Establishment |

=D, DstPort=Ds

a) SYN, SrcPort

_Erli,'l_S_Y_hHﬂg_(,_§rcPort=Ds DstPort=p
! o
—

pstPort=Ds

" ¢) ACK, SrcPort=Dc.

User
DTP

Server
DTP

Port Ds
o]
0
o
=
=3
(1]
Q
=
=3
a
3
=3
El
=
=3
Port Dc

=D i
" a) FINJACK, srcPort=D¢, DstPort sE

T __b_}f_C_K_, Sre —P_D_n_:_D 'S, DstPort=p i
i

__clf'_N_ffg’_(,_§rcPort=DS DstPort=p i
————5 DstPort=p |
—

rt=Ds '

) ACK srcPort=Dc DstPo .

timey Y time
Figure 1-6 STOR Command Operation

15-Oct-20 Page 6

dg_ftp25g_server_refdesign_en.doc M

1.5 RETR Command

The RETR command is sent from the client when user requires to download a copy of a file on the
server. The client provides the file name along with the RETR command. On the server side, after
the file name is decoded, the data of the requested file is returned. The step of data sequence is
similar to LIST command. The data connection is released by Server-DTP after the data transfer
is completed.

RETR Command |

1) Command = PASV

2a) FTP Command = RETR

3) FTP Response 125
———°Pened data connection)

User
Pl

Server
PI

Port 21
Port Pc

%) FTP Response 206 ™
———{Transferring complete)

T

time ¥y Y time
| 2b) Connection Establishment |
: pstPort=Ds

'~ a)SYN, SrcPort=D¢,

_Erli,'l_S_Y_hHﬂ(_ﬂ_(,_§rcPort=Ds DstPort=p
! o B
—

pstPort=Ds

| ¢) ACK, SrcPort=D¢,

User
DTP

Server
DTP

5) Connection Termination

Port Ds
Port Dc

-2 FINIACK, SrcPorg=ps DstPort=p
— 7 9 =Dc |
——— |

b) ACK, SrcP ort=Dc, DstPort=Ds

rt=Dc, DS‘P°“=D$§

¢) FIN|ACK, SrcPo .
d) A y |
'-———}___K_'_SIC_P_O_H__P_S’_E’StPC’ﬂ=DC
™

timey Y time
Figure 1-7 RETR Command Operation

15-Oct-20 Page 7

dg_ftp25g_server_refdesign_en.doc M

2 Hardware Structure

"FTP client
__Fo__
(o2 ion2525 oy
A
CQUCJR ‘ MacClk 25Gh
(100 MHz) | (390.625 MHz) Ethernet
\
1 Top25GPHY y
LAxi2Reg |
‘ Register IIF UserMAC 192.168.25.42 }
A)((I::a-lc_;ts } Mac _".(.UserMAC)= UserMAC Data IfF |
| Reg
25Gh
. _-——_——4__ _ _ -~~~ _____ é:’hifﬁ | (10G/256G)
\ UserClk MAC Ethernet
| (275/280 MHz) | PcsiPmA
| |
! Toe > Register I/F (TOE25G-IP) |
} Reg |
CPU | Link Layer Phy Layer
System AXl4-Lite | FAT Data I/F o PCeCK
~ EX & 250 MH.
(User) } (FIFO) 28| (250 MHz)
\ Integrated Block
| for PCI Express
\
| exFAT _ 128-bit
\ Reg Register I/F AX14-Stream Transceiver
| (exFAT-IP & NVMe-IP) (4-lane
| PCle Gen3)
\
\
FTP25CPUTest :
(FPGA) | A |_b.
¢ IFin
NVMe SSD

Figure 2-1 Demo block diagram

As described in the introduction, at least two connections are necessary for running FTP protocol,
i.e., control connection for transferring FTP command and response and data connection for
transferring data in some FTP commands such as LIST, STOR and RETR command.

The control connection is handled by CPU system. All data for control connection are created and
monitored by CPU system through exFATReg, ToeReg and MacReg. When FTP client sends the
new command, UserMAC forwards the command from 25G Ethernet MAC (10G25GEMAC) to
CPU system for processing. After that, CPU returns FTP response to UserMAC which is
forwarded to 10G25GEMAC. CPU system can access the hardware to monitor the system
through two AXI4-Lite buses which are mapped to the different base addresses. One AXI4-Lite
bus is for connecting with MacReg and another is for connecting with exFATReg and ToeReg
which are mapped to different address.

15-Oct-20 Page 8

dg_ftp25g_server_refdesign_en.doc m

The data connection is handled by TOE25G-IP which is implemented inside TopTCP25G. The
data source of TOE25G-IP has two sources. First is file information, created by CPU system,
when operating LIST command. Second is data in the requested file, read from NVMe SSD by
eXFATNVMe module, when operation RETR command. The received data in the data connection
is directly connected to exFATNVMe module for operating STOR command.

By using TOE25G-IP with exFAT for NVMe system which consists of exFAT-IP and NVMe-IP, data
transferring in FTP demo can achieve good performance on 25G Ethernet speed. Though exFAT
for NVMe system performance is equal to NVMe PCle Gen3 device speed (about 3300 MB/s), the
performance in the demo is limited by 25 Gb Ethernet speed and personal computer specification.

More details of the hardware inside the demo are described in this topic.

15-Oct-20 Page 9

dg_ftp25g_server_refdesign_en.doc m

2.1

2.2

25G (10G/25G) Ethernet PCS/PMA (25G BASE-SR)

This module implements PCS and PMA logics of 25G Ethernet. The physical interface is
SFP28 for 25Gb BASE-SR standard. The user interface for connecting with 25G Ethernet
MAC is 64-bit XGMII interface running at 390.625 MHz. This IP core can be created by using
IP wizard in Vivado tools without the charge. More details of the core are described in the
following link.

25G Ethernet PCS/PMA (BASE-SR)
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html

Ethernet MAC (25G Ethernet)

In the reference design, DG 10G25GEMAC-IP is applied to connect between TOE25G-IP and
PCS/PMA block for running 25Gb Ethernet application. The interface with TOE25G-IP is
64-bit AXlI4-stream at 390.625 MHz while the interface with PCS/PMA is 64-bit XGMII at the
same clock as AXl4-stream. More details about DG 10G25GEMAC-IP are described in the
following link.

https://dgway.com/products/IP/1I0GEMAC-IP/dg 10g25gemacip data sheet xilinx_en.pdf

15-Oct-20 Page 10

https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html
https://dgway.com/products/IP/10GEMAC-IP/dg_10g25gemacip_data_sheet_xilinx_en.pdf

dg_ftp25g_server_refdesign_en.doc m

2.3 TopTCP25G

UserTxMACData TopTCP25G

(Control Conn)

64 =1
UserMAC UserRxMACData |

/ (Control Conn) '
/64 |

A

B Register I/F \ MadTxData
- lanl L -
. TOE25GW(Data 64 ;
LAxi2ZReg (LIST
o =i\ Data

10G25G

|

1
1

I

|

|

|

\ i

exFATFfW(Data g ! e EMAC
(RETR) | NvMe2TOE TOE25GIP

128 Fifo 128 |'

I

|

|

|

|

|

|

|

|

1

I

exFATNVMe exFATFRdData Data

P (ST/QR TOE2NVMe | e - MacR;EData
128 Fifo | 7128 - /64
UserClk MacClk
275/280 MHz (390.625 MHz)|

Figure 2-2 TopTCP25G block 'diaqram

TopTCP25G is the module for transferring data with 25G Ethernet MAC (10G25GEMAC). To
run FTP server application, two ports are implemented on the hardware. First is control
connection and another is data connection. The control connection is responsible to decode
FTP command and return FTP response. The data packet for control connection is small, so
this port is implemented by using UserMAC controlled by CPU which is low-speed channel.
The data connection is applied to transfer data of each file in RETR and STOR command and
file list in LIST command. Since data size of data connection in RETR and STOR command is
big, this port is implemented by using TOE25G-IP to achieve high-speed performance. The
data source of TOE25G-IP is selected between LAxi2Reg and exFATNVMe. File list in LIST
command is created by CPU through LAxi2Reg while data in the file when running RETR
command is read from SSD by exFATNVMe.

After finishing the connection establishment, the port number of UserMAC is the port for
control connection while the port number of TOE25G-IP is the port for data connection.
Though all received packets from 10G25GEMAC-IP are forwarded to both UserMAC and
TOE25G-IP, the packet filtering inside UserMAC and TOE25G-IP has never operated the
same received packet by the different port number assignment.

As shown in Figure 2-2, there are two data-width user interfaces for TopTCP25G, i.e., 128-bit
for TOE25G-IP and exFATNVMe which are run on UserClk domain and 64-bit for UserMAC
which are run on MacClk, the same clock as EMAC. Moreover, there are 2 FIFOs included in
TopTCP25G to act as the temporary buffers. Both buffers are applied to control the data flow
between exFATNVMe and TOE25G-IP. NVMe2TOEFifo stores the read data returned from
the SSD through exFATNVMe and then forwards to TOE25G-IP. TOE2NVMeFifo is designed
to have the data direction reversed from NVMe2TOEFifo.

15-Oct-20 Page 11

TOE25G-IP implements TCP/IP stack and offload engine. User interface has two signal
groups, i.e., control signals and data signals. Register interface is applied to set control
registers and monitor status signals. Data signals are accessed by using FIFO interface.
More details are described in datasheet.
http://www.dgway.com/products/IP/TOE25G-IP/dg_toe25gip_data sheet xilinx.pdf

dg_ftp25g_server_refdesign_en.doc

2.3.1 TOE25G-IP

Register I/F
(TOE25G-IP
for Data Conn)
UserReg |- -
(LAxi2Reg) | TOE25GWrData ~ 32
(LIST)
128 >\ TCPTxFfWrData TOEMacTxData
NVMe2TOEFRdData 7 5—» e
128 64
NVMe2TOE (RETR)
Fifo 128 64-bit
AXI4 Stream
TCPRxFfRdData T
achxbatla
TOE2NVMe | _ (STOR) v
- | .‘%7
Fifo 128 /B4

Figure 2-3 TOE25G-IP interface for data connection

In this demo, TOE25G-IP is applied for transferring data of data connection at high-speed rate.
The network parameters of TOE25G-IP are set by CPU through LAxi2Reg to run as data
connection of FTP command. Total transmit size of TOE25G-IP when running RETR
command is also calculated and set by CPU which can be decoded from the file size in SSD.
To operate STOR command, the received data of TOE25G-IP is stored to TOE2NVMeFifo
when the receive buffer within TOE25G-IP is not empty and NVMe2TOEFifo is not full until
completing the command.

15-Oct-20 Page 12

http://www.dgway.com/products/IP/TOE25G-IP/dg_toe25gip_data_sheet_xilinx.pdf
http://www.dgway.com/products/IP/TOE25G-IP/dg_toe25gip_data_sheet_xilinx.pdf

dg_ftp25g_server_refdesign_en.doc m

2.3.2 Transmit data path (NVMe2TOEFifo)

TOE25GWrEn
> TCPTXFfWrEn
LIST DFF

command IOEQSGFUII A
"FOEQSGWrData
128 > TCPTxFfWrData
exFATFifoWwrData _ NVMe2TOEFfRdData 128 . TOE25GIP
RETR 128 P i dout 128 - < ConnOn
command - | wr_en rd_en |-t—e - TCPTXFiFull
exFATFifoWrEn NVMe2TOEFfRAEN i D

NVMe2 TOEFifo

exFATFifoWrCnt[8:0] NVMe2TOEFfEmpty

-4 9 data_count empty

Figure 2-4 Transmit data path of TOE25G-IP

To transmit data to client through TOE25G-IP, there are two data sources, i.e., the list of file
name stored in the SSD written by CPU firmware and the data of the file returned from the
SSD through exFATNVMe, as shown in Figure 2-4.

To transfer the data of the file in RETR command, the step for transferring data from FIFO to

TOE25G-IP is described as follows.

(1) The hardware must ensure that NVMe2TOEFifo has remaining data
(NVMe2TOEFfEmpty= 60Tx FIFO of TOE25G-IPisnot full (TCP T x Ff Rndlthe =6
data connection establishmentis completed (C o n n O befodelagsgrting read enable of
NVMe2TOEFifo (NVMeTOEFRRIEN=44.

(2) In the next clock, the data transmits to TOE25G-IP by asserting TCPTXFfWrEnt o wihl 6
the valid data from FIFO (NVMe2TOEFfRdData).

To transfer file name in LIST command, the design allows CPU to write data to TOE25G-IP
directly by asserting TOE25GWTrEn and assigning TOE25GWrData.

The FIFO is generated to control the data flow between exFATNVMe and TOE25G-IP. The
size is 8 Kbytes (512x128-bit). exFATFifoWrCnt is monitored by exFATNVMe module to
check the free space size in the FIFO. When the free space is enough and data of the SSD is
ready, 512-byte data is sent to NVMe2TOEFifo.

15-Oct-20 Page 13

dg_ftp25g_server_refdesign_en.doc m

2.3.3 Receive data path (TOE2NVMeFifo)

exFATFifoRdData TCPRxFfRdData
78 g dout din [~ /128
exFATFifoRdEN ol » P
STOR - rd_en WrI_en |- DFF |-= TCPRxFfEmpty
TOE2NVMeFifo TOE25GIP
COMMANT o F ATFifOEMPY | arpty G \.&_TCPRxFRJEn
- TOE2NVMeFWrCat™ — >
dat t = L /
ata_coun 79 Ll
exFATFifoRdCnt[8:0]

Figure 2-5 Receive data path of TOE25G-IP

The data read from client through TOE25G-IP is stored to TOE2NVMeFifo when operating
STOR command. Data of the file received from FTP client is stored to the SSD through
exFATNVMe. exFATFifoRdCnt and exFATFifoEmpty are monitored to check the available
data in FIFO before forwarding to the SSD.

TOE2NVMeFifo is similar to NVMe2TOEFifo, the size is 8 Kbytes, but the data path is
reversed.

15-Oct-20 Page 14

dg_ftp25g_server_refdesign_en.doc

2.4 UserMAC
LAxi2Reg UserMAC
UserTx
(Ctrl| UF) UserTxMAC
- > 10G25GEMAC
UserTkRAM (Txl/F)
(Data I/F) 64 T
P TxRAM
64-bit
Mac AXl4:Stream
Reg UsebRx
sef
UserRxMAC
_ (cwlwF) 10G25GEMAC
- (Rx|IF)
UserRxRAM - =)
- 32 |

Figure 2-6 UserMAC block diagram

UserMAC is responsible to transfer TCP/IP packet for FTP control connection. The step of
FTP control connection is designed by CPU firmware to access UserMAC registers through
UserReg module. Data interface of UserMAC with UserReg is 32-bit RAM standard while
data interface with 10G25GEMAC is 64-bit AXI4 Stream standard.

UserMAC consists of two modules, i.e., UserTXMAC and UserRxMAC. UserTXMAC includes
TXRAM which stores the data written by CPU to 10G25GEMAC. UserRXxMAC includes
RxRAM which stores the received packet from 10G25GEMAC. The header of received
packet has been verified by the packet filtering logic before stored to RXRAM. More details of
UserTxMAC and UserRxMAC are described as follows.

15-Oct-20 Page 15

dg_ftp25g_server_refdesign_en.doc m

2.4.1 UserTxMAC

| UserTxMAC
| UserTxBysy
UserTxMACReady
. \ RisEdge
L () - Set S-R out >
UserTxReq .y / FF ! Detector +
(BUSY)Cileg
. MACKeep
il Generator »| FF UserTxMACKeep[7:0] -
o aiEn Dataout] (=851-EN -
3-bit [2:0] 7y
UserTxLen[2:0] LatchReg
| Ciataln
UsermxMACLast
. 1 rLenCnt . | EndPac _ -
Ld DataQut [113] ™ Detect p FF
UserTxLen[11:0] | UserTxLen[11:3]| CCU™er SR . UserTxMACValid
B |Dataln CntEn | Set e out ™ >
UserTxRamWrAddr{9:0] p-Cir(Valid)
‘rTxRadeAddr[S:Ol Address | _
UserTxRamVWrEn _ TxRAM - calunit |™
UserTxRamByteEn[3:0] (Ram UserTxMACData[63:0]
p 1024x32t064) » FF >
UserTxRamWrData[31:0]

Figure 2-7 UserTxMAC logic diagram

The step to transfer the packet from TXxRAM to EMAC is as follows.

(1) CPU confirms UserTxBusy= 0 Which means UserTxMAC is in Idle state.

(2) CPU writes transmit packet to TXRAM, starting from the 15' address (TxRamWrAddr=0).

(3) CPU sets UserTxLen=Packet size with asserting UserTxReq t o 0616 t o
transmission.

(4) UserTxMAC waits until UserTxMACReady is asserted to déwhich means 10G25GEMAC
is ready to receive the first data.

(B)UserTx Busy i s a sduring trapsthitting aatad At the same time, Counter loads
total transfer size and starts counting to control packet size. AddressCalUnit resets the
read address (rTxRamRdAddr) to O for reading the data starting from the 15t address.
UserTxMACData is the read data output from TxRAM for sending to EMAC.

(6) UserTxMACValidi s asserted tdataaldh@with WsersxmMACDatd. h e

(7) The remaining data in the packet is continuously read from TxRAM and sent to
10G25GEMAC until end of the packet. At the same time, UserTxXMACKeep is always set
toal |l 016.

(8) After the remaining packet size (rLenCnt) is equal to 1 which means the next data is the
last data of the packet, UserTxMACKeep value reads rLastLen to generate the byte valid
of the last data. It can be equal to 8 values: 0x01 (1-byte), 0x03 (2-byte), 0x07 (3-byte),
OXOF (4-byte), Ox1F (5-byte), Ox3F (6-byte), Ox7F (7-byte) or OxFF (8-byte).
UserTxMACLast is also asserted to d.6for sending the last data.

(9) After the last data of the packet is transmitted, UserTxMACValid and UserTxBusy are
de-assertedt o . 6 00

15-Oct-20 Page 16

dg_ftp25g_server_refdesign_en.doc m

2.4.2 UserRxMAC

UserRxMAC
UserRxHdValid[37:0] o B J - UserRxMACData[63:0]
UserRxHdData[37:0][7:0] g Header b I o
rHdok37:0][CMP
Hd |- - UserRxMACLast
Verify | DFF |a—e{ :
rLastAddrvalid 1= ool '
—_— Latch
UserRxRamRdAddr{9:0] : , Reg
= agaro dina
UserRxRamRdData[31:0] Datein
- doutb Dataln|-g—e¢ m
RxRAM Ld|a—{—— 4—"‘,
(Ram Addr Det
512x641032) Counter
addra e rRxRamWrAddr(8:0] IDataCut CrtEn|-g— X UserRxMACValid
e —i DFF |« serRx ali
UserRxMacFfRdEn ol en wr o
<YUserRxMacFfRdData[8:0] |, il rLastAddrLat[8:0]
RxMacFf
_UserRxMacFiCnt4:0] (Fifo32x9)
- data_coun:
~_UserRxMacFfEmpty arrply
_UserRxMacFfFull o

Figure 2-8 UserRxMAC logic diagram

The step when the new packet is received from EMAC is as follows.

(1) a) When the first valid data of the packet is detected, the enable signal to compare 38-byte

header of each packet is asserted to éod 56clock cycles (one clock cycle can compare
8-byte data).
b) At the same time, the address counter (AddrCounter) for generating write address of
RxRAM (rRxRamWrAddr) loads the latest position of valid packet from rLastAddrLat. After
that, the write address is increased to store the next data to the next address of RxRAM.
c) The received packet is stored to RXRAM by using UserRxMACValid to be write enable
of RXRAM and UserRxMACData to be write data.

(2) Byte#01 #37 of received data (UserRxMACData) are fed to header comparator module
(HeaderCmp) to compare with the expected value (UserRxHdData), set by CPU firmware.
UserRxHdValid is enable/disable flag to compare each byte of the header. BitO, 1, 2, é ,
37 of UserRxHdValid are the enable of byteO, 1, 2, é , 37 respectively.

(3) When the last data of the packet (UserRxMACLast) is detected, the result of header
comparison flag (rHdOK) is read. If all headers are valid (rHdOK=a | | rL&s1AddyrValid is
assert e.dAt theosame ltie, the latest address (rRxRamWrAddr) is loaded to
rLastAddrLat for using in AddrCounter and RxMacFf. Otherwise, rLastAddrValid is not
asserted to keep the same value of the latest valid address.

(4) CPU waits until the new packet is received by checking FIFO count (UserRxMacFfCnt) is
not equal to 0. Next, CPU asserts read enable (UserRxMacFfRdEnN) to read the end
address which stores the last data of each packet (UserRxMacFfRdData). After that, CPU
reads and decodes one received packet until the read address (UserRxRamRdAddr) is
equal to the end address. Step (4) is repeated until FIFO count is equal to 0.

Note: UserRxRamRdAddr is the address for 32-bit data while rRxRamWrAddr is the
address for 64-bit data. So, CPU firmware must convert the address of 64-bit data to the
address of 32-bit data before starting reading data from RxRAM.

15-Oct-20 Page 17

dg_ftp25g_server_refdesign_en.doc

The 38-byte header of received packet for control connection of FTP application is shown as

Figure 2-9.
4 - Ethernet header
4 _IP header
¢ _TCP header
Bits 0-7 Bits 8-15 Bits 16-23 Bits 24-31 Bits 32-39 Bits 40-47 Bits 48-55 Bits 56-63
Destination MAC Address Source MAC Address
Source MAC Address Ethernet Type=IPv4 VerfloanL Type_ i
=v4 senice
Length Id Number Fragment Offset TTL F:[}‘DC';E"
IP Checksum Source IP address Destination IP address
L Destination Port
Destination IP address Source Port Number Number=21

Figure 2-9 TCP/IP Packet header for FTP application

HeaderCmp is the packet filtering module which is controlled by CPU firmware. 38-byte
header is verified with the data set from CPU. In the demo, CPU firmware assigns the enable
flag and the expected data for comparing six data, described as follows (blue-color font in

Figure 2-9).

1) Ethernet Type (2 bytes)

2) IP version (1 byte)
3) Protocol (1 byte)
4) Source IP Address (4 bytes)

5) Destination IP Address (4 bytes)
6) Destination Port Number (2 bytes)

= 0x0800 (IPv4)

= 0x45 (Version 4)
= 0x06 (TCP Protocol)

= |IP address of FTP client
IP address of FPGA

= 0x0015 (Port 21)

When the header of the packet is matched to the above parameters, the received packet is
stored to RXRAM for CPU processing. Otherwise, the packet is ignored.

15-Oct-20

Page 18

dg_ftp25g_server_refdesign_en.doc M

2.5 exFATNVMe

TopTCP25G

RxFIFO I/F
(File data)

LAXxi2Reg

128-bit

Control I/F

AXI4-Stream Integrated
exFAT Block for
Reg PCI Express

UserClk | PCleCik
(275/280 MHz) | (250 MHz)
|

Figure 2-10 exFATNVMe block diagram

exFATNVMe is exFAT-IP core for NVMe SSD which consists of exFAT-IP and NVMe-IP. More
details of exFAT-IP are described in the data sheet.
https://dgway.com/products/IP/NVMe-IP/dg exfatip nvme data sheet en.pdf

In FTP 25G demo system, the control interface for setting file parameters is controlled by
CPU through exFATReg inside LAxi2Reg module. The data interface (FIFO standard) is
connected to TopTCP25G to transfer data with TOE25G-IP.

15-Oct-20 Page 19

https://dgway.com/products/IP/NVMe-IP/dg_exfatip_nvme_data_sheet_en.pdf

dg_ftp25g_server_refdesign_en.doc m

2.6 CPU and Peripherals

32-bit AXI4-Lite is applied to be the bus interface for the CPU accessing the peripherals such
as Timer and UART. To control and monitor the test system, the control and status signals are
connected to register for CPU access as a peripheral through 32-bit AXI4-Lite bus. CPU
assigns the different base address and the address range to each peripheral for accessing
one peripheral at a time.

In the reference design, the CPU system is built with two additional peripherals to access the
hardwares in two clock domains. First clock is UserClk which is applied for controlling exFAT
system and TOE25G-IP. Second clock is MacClk which is applied for controlling Ethernet
MAC system. The base address and the range for accessing the hardware are defined in the
CPU system. So, the hardware logic must be designed to support AXI4-Lite bus standard for
supporting CPU writing and reading. LAxi2ZReg module is designed to connect the CPU
system as shown in Figure 2-11.

i LAxi2Reg
|
|
: Register I/F
| exFAT | (OFATIR) FATSATA
f ——p ex
Register] Re9
. Register I/F < g »
‘AXI d-Lite| Async | (Usen) 32
AXIReg 47;’ Mux
B2 32 Register
I/E
47@’ Register I/F
T (TOE25G-IP)| TOE25GIP
CPU ! S
| Reg
|
| UserClk
CpuClk (279280MHz) L ——]
100 MHZ) | ppacCik
| (390.625 MHz)
1
|
! - Register I/IF
. Register I/F
AXIpLite| | ?Mac) (UserMAC)
-¢ sync -4——Pp| UserMAC
32 | AXIReg - 2 - MacReg
|

Figure 2-11 LAxi2Reqg block diagram

LAxi2Reg consists of three modules: AsyncAXIReg, UserReg and exFATReg. The main
responsibility of AsyncAXIReg is to convert 32-bit AXI4-Lite interface in CPU clock domain to
register interface in Mac clock domain and User clock domain. AXl4-lite is the interface for
CPU firmware communication with exFATReg, ToeReg and MacReg module. Two
AsyncAXIReg modules are included in the system for supporting two clock domains. First
clock domain is User clock which is used to operate TOE25G-IP and exFATNVMe, so the
module requires a multiplexer for selecting the data between ToeReg and exFATReg to
transfer through one AsyncAXIReg module. Another is Mac clock domain which is used to
operate only UserMAC module. exFATReg, ToeReg and MacReg include the register file of
the parameters and the status signals for exFATNVMe, TOE25G-IP and UserMAC
respectively. More details of each module are described as follows.

15-Oct-20 Page 20

dg_ftp25g_server_refdesign_en.doc m

2.6.1 AsyncAXIReg

AsyncAXIReg

: Address |— p» Fi:a.:?:r RegAddr
LAxiAw* Control — Adg
. (Write) ress
———— Register RegWr*
| LAxiw Data ——{ Wiite I/F
g | Control
LAxiB* (Write)
—b
Address
LAXiAF Control —
- (Read) F———| —
Register RegRd*
—————| Data Read I/F 4
LAXir* Control [
F—————m (Read) S

Figure 2-12 AsyncAXIReq interface

The signal on AXI4-Lite bus interface can be split into five groups: LAXiAw* (Write address
channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr* (Read
address channel) and LAxir* (Read data channel). More details to build custom logic for
AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xInx/attachments/xInx/NewUser/34911/1/designing_a_custom_axi
slave revl.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. So, the
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups: Write control
logic, Write data logic, Read control logic and Read data logic as shown in the left side of
Figure 2-12. Write control I/F and Write data I/F of AXI4-Lite bus are latched and transferred
to be Write register interface with clock-crossing registers. In the same way, Read control I/F
of AXI4-Lite bus are latched and transferred to be Read register interface with clock-crossing
registers. After that, the returned data from Register Read I/F is transferred to AXI4-Lite bus
by using clock-crossing registers. In register interface, RegAddr is shared signal for write and
read access, so it loads the value from LAxiAw for write access or LAXxiAr for read access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReqg and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-13.

15-Oct-20 Page 21

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_ftp25g_server_refdesign_en.doc m

During read opreation, RegAddr holds the
same value untll RegRdValid is asserted to “1°.

Clk Mm + - Output signal
i . ! ' ¢ _ Input signal

N |

RegRdValid

EDQ’R/DOE X

RegRdData[31:0]

o1 S ——
RegAddr[13:0] :)(Ao;)(;X m; % ;)(
RegWrData[31:0] —[J(wod)[| ol
RegWrByteEn[3:0]) BEo)
RegWrEn | r.'/?]: 555
RegRdReq ! ¢ 5
/ £ ‘
/ >
1 A S

/ / /
1. RegWrEn is asserted to *17, /| 3. RegRdValid is asserted to “1’
synchronous with RegAddr, RegWrData, synchronous with RegRdData
and RegWrByteEn for writing register to return valid register data

2. RegRdReq s assertedto '1
synchronous with RegAddr to
send read register request.

Figure 2-13 Regqister interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is
asserted htteee valdl signawof tRegAddr (Register address in 32-bit unit),
RegWrData (write data of the register) and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2] and [3] are equal to déwhen
RegWrData[7:0], [15:8], [23:16] and [31:24] are valid respectively.

2) To read register, AsyncAXiReg asserts RegRdReq to 061dr wi
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to 46 So, the address
can be used for selecting the returned data by using multiple layers of multiplexer.

3) Theread data is returned on RegRdData bus by the slave with assertingRegRd Va |l i d 1
After that, AsyncAxiReg forwards the read value to LAXir* interface.

15-Oct-20 Page 22

dg_ftp25g_server_refdesign_en.doc

2.6.2 exFATReg

Async
AXIReg

RegAddr

RegWr*

RegRd™

Address
Decoder

| exFATReg

Control I/F
(File parameters)

-

DG

exFATNVMe

Figure 2-14 exFATReq block diagram

The address range to map to exFATReg is split into two areas, as shown in Figure 2-14.

1) 0x0000 7T OxOOFF:
is write-access only.

2) 0x01007 OxXOFFF:
read-access only.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
latency of read data is equal to two clock cycles, so RegRdValid is created by RegRdReq with
asserting two D Flip-flops. More details of the address mapping within exFATReg module is

shown in Table 2-1.

15-Oct-20

mapped to set file parameters of exFATNVMe module. This area

mapped to read the status of exFATNVMe module. This area is

Page 23

dg_ftp25g_server_refdesign_en.doc

DG

Table 2-1 Memory Map of exFATReq
Address Register Name Description
Wr/Rd Label in fitp25cputest.co
BAO0+0x0000 i BAO+0x00FF: Control signals of exFAT-IP (Write access only)
BA0O+0x0000 | User File Name Reg [26:0] - Input to be UserFName of exFAT-IP for NVMe
(USRFNAME_REG)
BA0+0x0004 | User File Length Reg [26:0] - Input to be UserFLen of exFAT-IP for NVMe
(USRFLEN_REG)
BAO+0x0008 User File Size Reg [2:0] - Input to be FSize of exFAT-IP for NVMe.
(USRFSIZE_REG) Set File size to exFAT-IP when running Format command.
BA0+0x000C | Date and Time Reg [4:0] - Input to be FTimeS of exFAT-IP for NVMe
(DATETIME_REG) [10:5] - Input to be FTimeM of exFAT-IP for NVMe
[15:11] - Input to be FTimeH of exFAT-IP for NVMe
[20:16] - Input to be FDateD of exFAT-IP for NVMe
[24:21] - Input to be FDateM of exFAT-IP for NVMe
[31:25] - Input to be FDateY of exFAT-IP for NVMe
BA0O+0x0010 exFAT Command Reg [1:0] - Input to be UserCmd of exFAT-IP for NVMe
(EXFATCMD_REG) When this register is written, exFATIPReg is assertedto 6 1 6
command operation.
BA0+0x0100 i BAO+0x08FF: Status signals of exFAT-IP and NVMe-IP (Read access only)
BAO+0x0100 | exFAT status Reg [0] - Mapped to UserBusy of exFAT-IP for NVMe
(FATSTS _REQG) [1] - Mapped to UserError of exFAT-IP for NVMe
BAO+0x0104 | Total file capacity Reg [26:0] - Mapped to TotalFCap[26:0] of exFAT-IP for NVMe
(TOTALFCAP_REG)
BAO+0x0108 | User error type Reg [31:0] - Mapped to UserErrorType[31:0] of exFAT-IP for NVMe
(FATERRTYPE_REG)
BAO+0x010C | exFAT IP test pin (Low) Reg [31:0] - Mapped to TestPin[31:0] of exFAT-IP for NVMe
(FATTESTPINL_REG)
BAO+0x0110 exFAT IP test pin (High) Reg [31:0] - Mapped to TestPin[63:32] of exFAT-IP for NVMe
(FATTESTPINH_REG)
BAO+0x0114 Directory capacity Reg [19:0] - Mapped to DirCap[19:0] of exFAT-IP for NVMe
(DIRCAP_REG)
BAO+0x0118 File size in the disk Reg [2:0] - Mapped to DiskFsize of exFAT-IP for NVMe. This register shows the
(DFSIZE_REG) current file size used in the device, read by exFAT-IP for NVMe.
BAO+0x011C | Total file in the disk Reg [26:0] - Mapped to DiskFnum of exFAT-IP for NVMe
(DENUM_REG)
BAO+0x0120 | Disk capacity (Low) Reg [31:0]: Mapped to LBASize(bit[31:0]) of NVMe-IP to check total capacity of
(DCAPL_REG) the NVMe device
BA0+0x0124 | Disk capacity (High) reg [15:0]: Mapped to LBASize(bit[47:32]) of NVMe-IP to check total capacity
(DCAPH_REG) of the NVMe device
BAO+0x0128 | Completion status Reg [15:0]: Status from Admin completion (AdmCompStatus[15:0] of NVMe-IP)
(COMPSTS_REG) [31:16]: Status from I/O completion (IOCompStatus[15:0] of NVMe-IP)
BAO+0x012C | NVMe CAP Reg [31:0]: Mapped to NVMeCAPReg [31:0] of NVMe-IP
(NVMCAP_REGQG)
BAO+0x0130 | NVMe test pin Reg [31:0]: Mapped to TestPin[31:0] of NVMe-IP
(NVMTESTPIN_REG)
BAO0+0x0200 | Current transfer size (Low) Reg | [31:0]: Bit[31:0] of the current transfer byte size in exFATNVMe module
(FATCURTRNSIZEL_REG)
BA0+0x0204 | Current transfer size (High) Reg | [24:0]: Bit[56:32] of the current transfer byte size in exFATNVMe module
(FATCURTRNSIZEH_REG)
BA0+0x0800 | exFATHP Version Reg [31:0]: exFAT-IP version number, mapped to IPVersion [31:0] of exFAT-IP
(EXFATNVME_VER_REGQG)
BAO+0x0804 | NVMe IP Version Reg [31:0]: NVMe-IP version number, mapped to IPVersion [31:0] of NVMe-IP
(NVME_VER REG)
15-Oct-20 Page 24

dg_ftp25g_server_refdesign_en.doc m

2.6.3 ToeReg
ToeReg
Address
RegAddr Decoder Reg IIF
[OxB000— (TOE25G-IP)
] >
RegWr* !_O_XB_("T_
Async _ TOE25GWrData
AXIReg " 0x9000- (LIST) .| TOE25G IP
|_Ox9FFF_| -
-
RegRd*
- TOE25G-IP
! -

Figure 2-15 ToeReqg block diagram

ToeReg includes the registers of TOE25G-IP. The address range is split into three areas.

1) Ox8000 71 Ox80FF: mapped to TOE25G-IP register for setting and monitoring
network parameters and control signals.

2) 0x9000 7T OX9FFF: mapped to write TCP data which is the list of file name, sent to
TOE25G-IP for LIST command.

3) OxA000 T OXAFFF: mapped to read the status signal, output from TOE25G-IP.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
latency of read data is one clock cycle, so RegRdValid is created by RegRdReq with asserting
one D Flip-flop. More details of the address mapping within ToeReg module is shown in Table
2-2.

15-Oct-20 Page 25

dg_ftp25g_server_refdesign_en.doc

Table 2-2 Memory Map of ToeReqg

Address Register Name Description
Wr/Rd Label in fitp25cputest.co

BAO0+0x8000 - BAO+0x80FF: TOE25G-IP Register Area

More details of each register are described in TOE25G-IP datasheet
BA0+0x8000 TOE_RST _REG Mapped to RST register within TOE25G-IP
BA0+0x8004 TOE_CMD_REG Mapped to CMD register within TOE25G-IP
BA0+0x8008 TOE_SML _REG Mapped to SML register within TOE25G-IP
BA0+0x800C TOE_SMH_REG Mapped to SMH register within TOE25G-IP
BA0+0x8010 TOE_DIP_REG Mapped to DIP register within TOE25G-IP
BA0+0x8014 TOE_SIP_REG Mapped to SIP register within TOE25G-IP
BA0+0x8018 TOE_DPN_REG Mapped to DPN register within TOE25G-IP
BA0+0x801C TOE_SPN_REG Mapped to SPN register within TOE25G-IP
BA0+0x8020 TOE_TDL_REG Mapped to TDL register within TOE25G-IP
BA0+0x8024 TOE_TMO_REG Mapped to TMO register within TOE25G-IP
BA0+0x8028 TOE_PKL_REG Mapped to PKL register within TOE25G-IP
BA0+0x802C TOE_PSH_REG Mapped to PSH register within TOE25G-IP
BA0+0x8030 TOE_WIN_REG Mapped to WIN register within TOE25G-IP
BA0+0x8034 TOE_ETL REG Mapped to ETL register within TOE25G-IP
BA0+0x8038 TOE_SRV_REG Mapped to SRV register within TOE25G-IP
BA0+0x803C TOE VER REG Mapped to VER register within TOE25G-IP
BA0+0x9000 - BAO+Ox9FFF: Tx data interface for TOE25G-IP
BAO0+0x9000 Write data to TOE25G-IP [31:0]: Bit[31:0] of Transmitted data written by CPU for sending through
Wr (TOE_TXDATA_REGO0) TOE25G-IP
BA0+0x9004 Write data to TOE25G-IP [31:0]: Bit[63:32] of Transmitted data written by CPU for sending through
Wr (TOE_TXDATA_REG1) TOE25G-IP
BA0+0x9008 Write data to TOE25G-IP [31:0]: Bit[95:64] of Transmitted data written by CPU for sending through
Wr (TOE_TXDATA_REG?2) TOE25G-IP
BA0+0x900C Write data to TOE25G-IP [31:0]: Bit[128:96] of Transmitted data written by CPU for sending through
Wr (TOE_TXDATA_REG?3) TOE25G-IP. When this register is written, it generates a pulse to write one
128-bit data to TOE25G-IP

BAO0+0xA000 - BAO+OXAFFF: TOE25G-IP Status Area
BA0+0xA000 TOE25G Status Register [0] - Reserved
Rd (TOE_STS_REG) [1] - Mapped to ConnOn signal of TOE25G-IP

[2] - Mapped to TCPTxFfFull signal of TOE25G-IP
BAO+0xA004 Interrupt Status of Wr:bit[0]: Set 616 to cl|l eadue Ti merlnt | atch
Ethernet interface Rd: bit[0]-6 1 6 : D e tinefom TOERSG@4Py 64 Ointémupt

Wr/Rd (ETHER_INT STS)
15-Oct-20 Page 26

dg_ftp25g_server_refdesign_en.doc m

2.6.4 MacReg
| MacReg
Address |
Decoder
Reaade: Reaist UserTxMAC
=== egister Reg IIF
I— I gigg‘:::; l———p| File#0 = > User
g o (Wr/Rd) TxMAC
RegWr | GG DRAMIEL | mRaM
0x1FFF >
Async t====
AXIReg o Register UserRxMAC
—— : OXEFFF e | Fier |4 Reg IF > RUI'?‘I?;\-C
X
RegRd" T (Wr/Rd)
| RRAMIF | f——————
- - RxRAM
L _
Reaist EMAC
== =—1 egister Reg IIF
| eaper [@————»= File#3 [- > Ewac
| XA (Wr/Rd)

Figure 2-16 MacReqg Block diagram

MacReg includes the registers of the module for processing Ethernet packet such as
UserTXxMAC and UserRxMAC. The address range is split into five areas.

1) 0x0000 7T OXOFFF: mapped to the control/status signals of UserTxMAC for
transmitting packet.

2) 0x1000 7 OX1FFF: mapped to write TXRAM which stores transmitted packet of FTP
control connection. This area is write-access only.

3) 0x2000 7T Ox2FFF: mapped to read RXRAM which stores received packet of FTP
control connection. This area is read-access only.

4) 0x3000 7 Ox3FFF: mapped to the control/status signals of UserRXxMAC for receiving
packet.

5) 0x4000 71 Ox4FFF: mapped to the control/status signals of DG 10G25GEMAC-IP

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. To read
register, three-step multiplexers are designed to select the read data, returned to CPU. The
latency of read data is equal to three clock cycles, so RegRdValid is created by RegRdReq
with asserting three D Flip-flops. More details of the address mapping within MacReg module
is shown in Table 2-3.

15-Oct-20 Page 27

dg_ftp25g_server_refdesign_en.doc

DG

Table 2-3 Memory Map of MacReg
Address Register Name Description
Wr/Rd Label in fitp25cputest.co
BA1+0x0000 i BA1+Ox1FFF: UserTxMAC Area
BA1+0x0000 Total Transmit Length Wr [11:0] - Total transmit size in byte unit. Valid from 1-OxFFF.
Wr/Rd (TXEMAC_LEN_REG) UserTXMAC starts transmitting packet after this register is written.
Rd[0]TiBusy flag of -Mds e Bis¥YMAC. 606
BA1+0x0000 i | TXRAM in UserTxMAC Transmitted data written by CPU for sending through UserTxMAC
BA1+0x1FFF
Wr (TXRAM_BASE_ADDR)
BA1+0x2000 i BA1+Ox3FFF: UserRxMAC Area
BA1+0x2000 i | UserRxMAC Header Data 38-byte to set the packet filter inside UserRXxMAC for comparing byte#0 i
BA1+0x2024 byte#37 of received packet when header byteena bl e i s a®sert
Wr (RXEMAC_HDVAL) If header byte enable is de-asserte d t o 0 O Bypassesithat byta. | t e
0x5000[7:0] T byte#0, [15:8] T byte#1, [23:16] T byte#2, [31:24]1 byte#3
0x5004[7:0] T byte#4, [15:8] 1 byte#5, [23:16] T byte#6, [31:24] i byte#7
é
0x5020[7:0] 7 byte#32, [15:8] 7 byte#33, [23:16] i byte#34, [31:24] 1 byte#35
0x5024[7:0] 7 byte#36, [15:8] i byte#37
BA1+0x20281 | UserRXMAC Header Byte | 38-bit to compare 38-byte header of received packet in UserRxMAC
BA1+0x202C Enable 0x50028[0] i Compare enable of byte#0, [1] T byte#l , €]i bjte#31
Wr (RXEMAC_HDEN) 0x5002C[0] i byte#32, [1]T byte#33, .., [5] 1 byte#37
BA1+0x2040 RXEMAC Last Address Rd [8:0] T Read last address from RxMacFf
Rd (RXEMAC_LASTADDR) When reading register, it generates a pulse of read enable for reading one data
from RxMacFf. So, please check that there is data in RxMacFf before reading
this register by checking RXEMAC_FFCNT is not equal to 0.
BA1+0x2044 FIFO Counter of RxMacFf Rd [4:0] 7 FIFO counter to show total number of data in RxMacF.
Rd (RXEMAC_FFCNT)
BA1+0x30007 | RXRAM in UserRXMAC Received data stored in RXRAM within UserRxMAC
BA1+0x3FFF
Rd (RXRAM_BASE_ADDR)
BA1+0x4000 i BA1+Ox4FFF: EMAC Status Area
BA1+0x4000 Interrupt Status of Ethernet | Wr: [0]-Set 6 108 troptwhéndRaMacFfinfulle r
interface Rd: [0]-6 1 0 : ct Aukflageof RxMacFf asserted, 6 O full No't
Wr/Rd (ETHER_INT_STS)
BA1+0x4004 EMAC Linkup status [0]: Ethernet linkup status from Ethernet MAC
Rd (EMAC_LINKUP_STS) (®6 Not linkup, @6 Linkup)
BA1+0x4008 EMAC-IP Version Reg Rd[31:0] 7 Mapped to IPVersion output from DG 10G25GEMAC-IP when the
Rd (EMAC_VER_REG) system integrates DG 10G25GEMAC-IP.
15-Oct-20 Page 28

dg_ftp25g_server_refdesign_en.doc M

3 CPU Firmware

CPU firmware implements two functions for running ftp server demo. First, CPU handles TCP/IP
packet of FTP control connection through MacReg and UserMAC module which transmits and
receives TCP/IP packet of control connection. Second, CPU controls and monitors the registers
of exFATNVMe and TOE25G-IP for handling TCP/IP packet of FTP data connection.

To run FTP server demo, CPU firmware operation is shown in Figure 3-1.

1. Receive network
and IP parameters
Blue: No hardware

Green: 10G25GEMAC-IP/ A

TOE25G-IP/lexFATNVMe Hardware ¢. Change
Yellow: UserMAC Initialization with/ TOE25G-IP
ithout forma parameter

b. Display P\
SSD status J
3. Receive test menu

from user

a. Run the FTP
server

3d. Shutdown
¥~ Disconnect FTP
7 Client

[
-

A

New port detected
but active session>=32

4. Wait new packet
received from
UserMAC

New port detected Port and SeqNum
and active session<32 are matched

5.1 Create connection 6. Check TCP ﬂag
(SYN/ACK)
FIN
5.2 Session=Active

ACK without
TCP data

ACK with
TCP data

7.1 Connection closed
(FIN)

8. Decode
FTP command

No data Has data
connection connection

9. Return
FTP response

10.1 Control TOE25G-|
and exFATNVMe

7.2 Session=Inactive

\J

metu m

FTP response

Figure 3-1 Firmware operation overview

15-Oct-20 Page 29

dg_ftp25g_server_refdesign_en.doc m

1

©

Receive and validate the network and IP parameters to initialize DG 10G25GEMAC-IP,
TOE25G-IP and the SSD. Then, set the parameters to TOE25G-IP, UserRxMAC and
exFAT-IP.

CPU waits until the hardware finishes the initialization process by monitoring linkup status of

10G25GEMAC-IP and busy flag of TOE25G-IP (TOE_CMD_REG) and exFAT-IP

(FATSTS_REG).

Enter to main menu for selecting the test mode. Four options are displayed as follows.

a) Runthe FTP server. This menu starts receiving FTP packet from client. This menu is run as
forever loop. User must enter special keys to return to main menu. Next, continue to step 4.

b) Change file created time and display the SSD information such as current file size
(DFSIZE_REG), maximum file in the disk (TOTALFCAP_REG) and total file in the disk
(DENUM_REG). After displaying SSD information is done, CPU returns to main menu.

c) Change network parameters such as IP address, MAC address and port number. After
changing network parameters is done, CPU returns to main menu.

d) Shutdown the server by sending the shutdown command to the SSD. Busy flag
(FAT_STS _BUSY]J0]) is de-asserted to ®bafter the shutdown process is completed. The
SSD and CPU change to inactive status and the system cannot receive any command
from user. Next, continue to step 11.

CPU waits until the new packet is received from UserRXxMAC. When the new packet is

detected, CPU decodes TCP flag to select the next step.

a) When the flag is SYN and total session now is less than 32, CPU goes to step 5.

b) If total session is equal to 32 which means that maximum session is reached, CPU stays in
this step and waits for some sessions to be closed.

c) Otherwise, CPU goes to step 6.

Create the new connection by running following step.

5.1 Return SYN/ACK packet and then wait until receiving the valid ACK without data packet.

5.2 Change the session status from Inactive to Active.

CPU finds the active session which the port number is matched and verifies the sequence

number is correct value.

a) When the flag is FIN, CPU goes to step 7.

b) When the flag is ACK and TCP data length is not equal to 0, CPU goes to step 8.

c) Otherwise, CPU has no operation and goes back to step 4.

Terminate the connection by running the following step.

7.1 Send FIN/ACK packet to close the connection and then wait until the valid ACK without

data is received.

7.2 Change the session status from Active to Inactive.

CPU decodes FTP command. There are two command types, i.e., command without data

connection and command with data connection.

a) CPU goes to step 9 for processing command without data connection.

b) Otherwise, CPU goes to step 10.

CPU prepares FTP response of each FTP command to TXRAM and then sets the parameters

to start transmitting FTP response to UserTxMAC.

More details when running FTP command without data connection are described in topic 3.1.

10 Data connection and control connection are run as following step.

10.1TOE25G-IP and exFATNVMe registers are set and monitored by CPU to start data
transferring on FTP data connection. Then, wait until finishing data transmission.

10.2Return FTP response, similar to step 9.

More details when running FTP command with data connection are described in topic 3.2.

11 Send Shutdown command to SSD and hold on until the system is reset.

15-Oct-20 Page 30

dg_ftp25g_server_refdesign_en.doc m

3.1 FTP command without data connection

The step when the new FTP command is received and CPU returns response on control
connection is as follows.

1)

2)

3)
4)

5)

6)

7
8)

9)

Wait until new received packet is stored in RxRAM by monitoring data counter of
RxMacFIFO (RXEMAC_FFCNT) is not equal to O.

Read data from RxMacFIFO by reading RXEMAC_LASTADDR. After that, CPU copies
data from RxRAM to the temporary buffer on firmware, beginning from the latest position to
RXEMAC _LASTADDR value.

Note: The temporary buffer on firmware is defined by BUFFSIZE parameter which is equal
to 128. So, the demo without modification can support up to 128-byte packet size which is
enough for processing FTP control connection.

Update the latest position in the firmware to be the new value (RXEMAC_LASTADDR).
Find the active port which has the client port equal to the source port in the received
packet.

a) Continue to the next step when the port is matched, the sequence number in the
received packet is equal to the expected value and received TCP flag is ACK without SYN
and FIN flag.

b) Otherwise, CPU creates or destroys the session when receiving SYN flag or FIN flag
following three-way handshake respectively.

Continue the next step when TCP data length in the received packet is not equal to 0. TCP
data length is calculated by (IP length i IP header length i TCP header length).

Create FTP response packet to the transmit temporary buffer. The value of FPGA
response is created following FTP command. Since there are a lot of standard FTP
commands, the demo implements some mandatory commands, related to FTP client
application, FileZilla. Lists of implemented command without data connection are
described in Table 3-1.

Call function to prepare the header and calculate checksum for transmitting FTP response.
Copy the packet from transmit temporary buffer to TXRAM and set total length to
TXEMAC_LEN_REG for starting packet transmission.

Wait until the packet transmission is finished by detecting when busy flag of UserTxMAC
(TXEMAC_LEN_REG) is equal to O.

10)Go back to step 1) for processing the next FTP command.

15-Oct-20 Page 31

dg_ftp25g_server_refdesign_en.doc

DG

Table 3-1 FTP Response for FTP command without data connection

FTP command Description Implemented FTP Response
USER Authentication username | 331 User is correct. Password is required
PASS Authentication password | 230 Logged in
530 Login is incorrect
PWD Print working directory 257 "PATHNAME" is the current directory
TYPE Set the transfer mode 200 Type set to |
PASV Enter passive mode 227 Enter Passive mode (h1,h2,h3,h4,p1,p2)
h1l-h4: IP address, pl-p2: Port number
CWD Change working directory | 250 Requested file action Okay
DELE Delete file 202 No implemented
QUIT Log out session 221 Bye.

When the command is not in the above list such as AUTH, PORT, SYST and FEAT, FTP
response 500 (syntax error) is returned. PASV command is the command sent by client before
sending FTP command with data connection, i.e., LIST, RETR, and STOR. More details of

FTP command with data connection are described in the next topic.

Note: DELE command is not implemented in the reference design, so user cannot delete any

flesfrom t he sergeer 6s stor a

15-Oct-20

Page 32

dg_ftp25g_server_refdesign_en.doc m

3.2 FTP command with data connection

Table 3-2 FTP Response for FTP command with data connection

FTP command Description Implemented FTP Response
LIST Return File list in the current directory | 125 Open data connection
STOR Accept the data and store the data | 226 Transferring complete

as a file at the server site

RETR Retrieve a copy of the file

In the demo, three FTP commands using data connection are implemented as shown in Table
3-2. The details of each FTP command are described as follows.

3.2.1

LIST

This command is applied to return file list in the current directory. List of files is created by CPU
firmware and the packet must be returned in FTP data connection which is controlled by
TOE25G-IP. So, CPU prepares file list and sends to TOE25G-IP. The step to run LIST
command is described as follows.

1)
2)

3)
4)
5)
6)

7
8)

9)

Read the number of files in the device from DFNUM_REG.

Wait until data connection establishment completes by monitoring ConnOn of TOE25G-IP
(TOEIP_STS_REG[1]=10.)

Call function to prepare FTP response 125 to TXRAM and start packet transmission.

Set TOE25G-IP parameters for sending file information, i.e., transfer packet size
(TOE_PKL_REG), total data length (TOE_TDL_REG), and command for sending data
(TOE_CMD_REG=Send).

Prepare file information and write to TOE_TXDATA_REG. The file information is sent to
data connection through TOE25G-IP.

Wait until finishing data transmission by monitoring busy flag of TOE25G-IP
(TOE_CMD_REG[0]=600)

Write command register of TOE25G-IP to close connection (TOE_CMD_REG=Close).
Wait until TOE25G-IP completes terminating the connection by monitoring busy flag of
TOE25G-IP (TOE_CMD_REG[0]=6 06) .

Call function to return FTP response 226 to TXRAM and start packet transmission.

15-Oct-20 Page 33

