
dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 1

2-ch RAID0 Design (NVMe-IP) reference design manual
Rev1.4 1-Jul-21

1 Introduction

Figure 1-1 RAID0 by 2 SSDs data format

RAID0 system uses multiple storages to extend total storage capacity and increase write/read
performance. Assumed that total number of devices connecting in RAID0 system is N, total
storage capacity of RAID0 is equal to N times of one device capacity. Write and read performance
of RAID0 are almost equal to N times of one device performance.

Data format of RAID0 is shown in Figure 1-1. Data stream of the host side is split into a small
stripe for transferring with one SSD at a time. Stripe size is the data size transferring with one SSD
before switching to other SSDs. In RAID0 reference design, stripe size is equal to 512-byte.

In this demo, two SSDs are connected in the system. It is recommended to use the same model of
SSD for all channels to match the characteristic and achieve the best performance. As a result,
the total capacity is equal to two times of one SSD and the write/read performance are almost two
times of one SSD performance.

The demo uses FIFO implemented by BlockRAM to be the buffer which has smaller size than
using DDR. Therefore, the buffer is sometimes not ready to transfer data when SSD pauses data
transmission for long time in Write process. Test performance in the demo is average speed, not
sustain rate. User can modify RAID0 reference design by increasing the numbers of SSD to
achieve the better performance and the bigger capacity. Furthermore, user can add DDR to be
data buffer in the system for supporting high-speed transferring as sustain rate.

Before running the reference design, it is recommended to read NVMe-IP datasheet and single
channel demo from following link.
https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_en.pdf
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_en.pdf
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_instruction_en.pdf

https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_en.pdf
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_en.pdf
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_instruction_en.pdf

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 2

2 Hardware overview

Figure 2-1 RAID0x2 demo system by using NVMe-IP

The hardware system can be divided to three groups, i.e., TestGen, NVMeRAID0x2, and CPU.
First, TestGen is the test logic to generate and verify test data stream with NVMeRAID0x2 through
U2IPFIFO/IP2UFIFO. Second, NVMeRAID0x2 consists of the Raid0x2, two NVMe-IPs, and two
PCIe hard IPs (Integrated Block for PCIe). Data format in two NVMe SSDs is arranged as RAID0,
controlled by Raid0x2 module. Each NVMe SSD must directly connect to PCIe hard IP without
PCIe switch. Last, CPU and LAxi2Reg are designed to interface with user through Serial interface.
User can set test parameters and monitor hardware status through the console. After that, CPU
firmware processes the command and starts the test operation on the hardware.

There are three clock domains displayed in Figure 2-1, i.e., CpuClk, PCIeClk, and UserClk. First,
CpuClk is the clock domain of CPU and its peripherals. This clock must be stable clock which may
be different from the clock of other hardwares. Second, PCIeClk is the clock output from PCIe
hard IP. When the PCIe hard IP is set to 4-lane PCIe Gen3, PCIeClk frequency is equal to 250
MHz for 128-bit AXI4 stream bus. Last, UserClk is the example user clock for running all user
logics such as Raid0x2, NVMe-IP, RAM, FIFO, and TestGen. According to NVMe-IP datasheet,
clock frequency of UserClk must be more than or equal to PCIeClk. In this reference design,
UserClk is equal to 275 MHz or 280 MHz for PCIe Gen3.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 3

There are six memories implemented by BlockRAM in the test system - CtmRAM, IdenRAM,
TxFIFO, RxFIFO, U2IPFIFO, and IP2UFIFO. CtmRAM stores returned data of each SSD from
SMART command while IdenRAM stores returned data from Identify command. When running
SMART command or Identify command, the returned data from the command is decoded by CPU
which is read through LAxi2Reg module by using AXI4-Lite interface. TxFIFO and RxFIFO are
connected between Raid0x2 and NVMe-IP to convert different data bus size, 256-bit and 128-bit.
U2IPFIFO and IP2UFIFO are connected between TestGen and NVMeRAID0x2 for storing data
when running Write command and Read command respectively.

TestGen monitors flow control signals of U2IPFIFO and IP2UFIFO and transfers data when the
FIFOs are ready. More details of the hardware are described as follows.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 4

2.1 TestGen

Figure 2-2 TestGen interface

TestGen module is the test logic to send test data to NVMeRAID0x2 through U2IPFIFO when
operating Write command. On the other hand, the test data is applied to be the expected
value to verify the read data from NVMeRAID0x2 through IP2UFIFO when operating Read
command. Control logic asserts Write enable or Read enable to ‘1’ when the FIFOs are ready.
Data bandwidth of TestGen is matched to NVMeRAID0x2 by running at the same clock and
using the same data bus size. Therefore, U2IPFIFO and IP2UFIFO are always ready for
transferring data with NVMeRAID0x2 in Write and read command. As a result, the test logic
shows the best performance to write and read data with the SSD through NVMeRAID0x2.

Register file in the TestGen receives test parameters from user, i.e., total transfer size,
transfer direction, verification enable, and test pattern. To control transfer size, the counter
counts total number of transferred data. The details of hardware logic within TestGen module
are shown in Figure 2-3.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 5

Figure 2-3 TestGen hardware

As shown in the right side of Figure 2-3, flow control signals of FIFO are WrFfAFull and
RdFfEmpty. When FIFO is almost full during write operation (WrFfAFull=’1’), WrFfWrEn is
de-asserted to ‘0’ to pause data sending to FIFO. For read operation, when FIFO has data
(RdFfEmpty=‘0’), the logic reads data from FIFO to compare with the expected data by
asserting RdFfRdEn to ‘1’.

The logic in the left side of Figure 2-3 is designed to count transfer size (rDataCnt). When total
data count is equal to the end size (rEndSize), set by user, write enable or read enable of
FIFO is de-asserted to ‘0’ to finish the operation. The lower side of Figure 2-3 shows the
details to generate test data for writing to FIFO or verifying data from FIFO. There are five
patterns to generate, i.e., all zero, all one, 32-bit incremental pattern, 32-bit decremental
pattern, and LFSR pattern, selected by Pattern Selector. When creating all-zero or all-one
pattern, every bit of data is set to zero or one respectively. While other patterns are designed
by separating the data as two parts to create unique test data in every 512-byte data, as
shown in Figure 2-4.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 6

Figure 2-4 Test pattern format in each 512-byte data for Increment/Decrement/LFSR pattern

512-byte data consists of 64-bit header in Dword#0 and Dword#1 and the test data in
remaining words of 512-byte data (Dword#2 – Dword#127). The header is created by using
the address in 512-byte unit, Address counter block. The initial value of the address counter is
set by user and the value is increased when finishing transferring 512-byte data. Remaining
Dwords (DW#2 – DW#127) depends on pattern selector which may be 32-bit incremental
data, 32-bit decremental data, or LFSR counter. 32-bit incremental data is designed by using
52-bit counter. The decremental data can be designed by connecting NOT logic to
incremental data.

The LFSR pattern is designed by using LFSR counter. The equation of LFSR is x^31 + x^21 +
x + 1. To implement 256-bit LFSR pattern, the data is split to be two sets of 128-bit data which
uses the different start value as shown in Figure 2-5.

Figure 2-5 256-bit LFSR Pattern in TestGen

By using look-ahead technique, one cycle generates four 32-bit LFSR data or 128-bit data,
the same color in Figure 2-5. The start value of each data set is designed by using
combination signal of 32-bit LBA address (LBAAddr) and NOT logic of LBA address
(LBAAddrB).

Test data is fed to be write data to the FIFO or the expected data for verifying with the read
data from FIFO. Fail flag is asserted to ‘1’ when data verification is failed. The example of
timing diagram to write data to FIFO is shown as follows.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 7

Figure 2-6 Timing diagram of Write operation in TestGen

1) WrPattStart is asserted to ‘1’ for one clock cycle when user sets the register to start write

operation. In the next clock, rWrTrans is asserted to ‘1’ to enable the control logic for
generating write enable to FIFO.

2) Write enable to FIFO (rWrFfWrEn) is asserted to ‘1’ when two conditions are met.
First, rWrTrans must be asserted to ‘1’ during the write operation being active.
Second, the FIFO must not be full by monitoring WrFfAFull=’0’.

3) The write enable is also applied to be counter enable for counting total number of data
(rDataCnt) in the write operation.

4) When FIFO is almost full (WrFfAFull=’1’), the write process is paused by de-asserting
rWrFfWrEn to ‘0’.

5) When total data count is equal to the set value, rWrTrans is de-asserted to ‘0’. At the same
time, rWrFfWrEn is also de-asserted to ‘0’ to finish generating test data.

When running read operation, read enable of FIFO is only controlled by empty flag of FIFO.
Comparing to write enable, the read enable signal is not stopped by total count and not
started by start flag. When the read enable is asserted to ‘1’, the data counter and the address
counter are increased for counting total data and generating the header of expect value
respectively.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 8

2.2 NVMeRAID0x2IP

Figure 2-7 NVMeRAID0x2 hardware

Figure 2-7 shows the example to interface NVMeRAID0x2 in the reference design. The user
interface of NVMeRAID0x2 consists of control interface and data interface. The control
interface receives the command and the parameters from custom command interface or dgIF
typeS, depending on the command. Custom command interface is used when operating
SMART command or Flush command.

The data interface of NVMeRAID0x2 has four signal groups, i.e., FIFO input interface (dgIF
typeS), FIFO output interface (dgIF typeS), custom command RAM interface, and Identify
interface. Data bus width of FIFO interface is 256-bit while the others are 128-bit. The custom
command RAM interface is bi-directional interface while the others are one directional
interface. In the reference design, the custom command RAM interface is used to transfer
data of SMART command from NVMeRAID0x2 to LAxi2Reg only. Another direction is not
used.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 9

2.2.1 NVMe-IP

NVMe-IP implements NVMe protocol of the host side to access one NVMe SSD directly
without PCIe switch connection. NVMe-IP supports six commands, i.e., Write, Read, Identify,
Shutdown, SMART, and Flush. NVMe-IP is designed to directly connect with the Integrated
Block for PCI Express. More details of the NVMe-IP are described in the datasheet.
https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_en.pdf

2.2.2 Integrated Block for PCI Express

This block is the hard IP which is available in some Xilinx FPGAs. The maximum number of
SSDs connecting to one FPGA device is limited by the numbers of PCIe hard IP. One
NVMe-IP connects to one PCIe hard IP for controlling one NVMe SSD. More details of PCIe
hard IP are described in following document.
PG054: 7 Series FPGAs Integrated Block for PCI Express
PG023: Virtex-7 FPGA Gen3 Integrated Block for PCI Express
PG156: UltraScale Devices Gen3 Integrated Block for PCI Express
PG213: UltraScale+ Devices Integrated Block for PCI Express

2.2.3 Dual port RAM

Two dual port RAMs, CtmRAM and IdenRAM, store data from Identify command and SMART
command respectively. IdenRAM is simple dual-port RAM which has one read port and one
write port. The data size of Identify command is 8 Kbytes, so IdenRAM size is 8 Kbytes.
NVMe-IP and LAxi2Reg have the different data bus size. Therefore, IdenRAM sets the
different bus size on Write interface and Read interface. The data interface of NVMe-IP (write
port) is 128 bits while the interface of LAxi2Reg (read port) is 32 bits. Besides, NVMe-IP has
double word enable to write only 32-bit data in some cases. The RAM setting on Xilinx IP tool
supports the write byte enable. Therefore, the small logic to convert double word enable to be
write byte enable is designed as shown in Figure 2-8.

Figure 2-8 Byte write enable conversion logic

Bit[0] of WrDWEn with WrEn signal are the inputs to AND logic. The output of AND logic is fed
to bit[3:0] of IdenRAM byte write enable. Bit[1], [2], and [3] of WrDWEn are applied to be
bit[7:4], [11:8], and [15:12] of IdenRAM write byte enable respectively.

https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_en.pdf

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 10

Comparing with IdenRAM, CtmRAM is implemented by true dual-port RAM (two read ports
and two write ports) with byte write enable. The small logic to convert double word enable of
custom interface to be byte write enable must be used, similar to IdenRAM. True dual-port
RAM is used to support the additional features when the customized custom command needs
the data input. To support SMART command, using simple dual port RAM is enough. Though
the data size returned from SMART command is 512 bytes, CtmRAM is implemented by
8Kbyte RAM for customized custom command.

2.2.4 FIFO
Two FIFOs are applied to interface one NVMe-IP with RAID0x2, TxFIFO and RxFIFO. Both
FIFOs are asymmetric FIFO and has 16 Kbyte size. TxFIFO converts 256-bit data (Raid0x2
data bus size) to 128-bit data (NVMe-IP data bus size) while RxFIFO converts 128-bit data to
256-bit data.

2.2.5 RAID0x2

Raid0x2 consists of state machine and data switch for handling control interface and data
interface respectively.

After receiving new command request from LAxi2Reg, state machine calculates the address
and transfer length of each NVMe-IP by decoding user parameter inputs. Next, state machine
generates command request with the valid address and length to all NVMe-IPs. Also, state
machine sets the active NVMe-IP channel to data switch for transferring data with the active
channel.

The active NVMe-IP channel is selected by the current transferred address in 512-byte unit.
When running with 2 NVMe-IPs, LSB bit (bit[0]) of the address is applied to select the active
channel – ‘0’: NVMe-IP#0, ‘1’: NVMe-IP#1. The current address is increased after finishing
transferring 512-byte data which is stripe size of RAID0 system. Therefore, the active channel
is switched to the next channel.

There are many pipeline registers inside data switch logic. Therefore, there is overhead time
for switching the active channel before transferring 512-byte data. In the reference design, the
overhead time is about 1 clock cycle while data is transferred for 16 clock cycles (16x256-bit =
512 bytes). As a result, the overhead time is about 6.25% (1 cycle/16 cycles). To compensate
the overhead time, clock frequency of Raid0x2 must be set to 6.25% higher than NVMe based
clock. NVMe based clock for PCIe Gen3 is equal to 250 MHz. The clock frequency after
compensating overhead time is 265.625 MHz (106.25% of 250 MHz). In the reference design,
275 MHz/280 MHz is applied to achieve the maximum performance for write and read
command. As a result, write or read performance of RAID0 operation is almost equal to two
times of one NVMe SSD performance.

The user interface of Raid0x2 is shown in Table 2-1. Control and data interface are designed
to compatible to dgIF typeS format. Please see more details of dgIF typeS format from
NVMe-IP datasheet.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 11

Table 2-1 Signal description of Raid0x2 (only User interface)

Signal Dir Description

Control I/F of dgIF typeS

RstB In Synchronous reset signal. Active low. De-assert to ‘1’ when Clk signal is stable

Clk In System clock for running Raid0x2 and NVMe-IP. It is recommended to use the frequency

more than 262.625 MHz for PCIe Gen3 to achieve the best performance. The minimum

requirement of Clk signal is the same as NVMe-IP (more than or equal to 250 MHz).

UserCmd[1:0] In User Command (“000”: Identify, “001”: Shutdown, “010”: Write, “011”: Read,

“100”: SMART, “110”: Flush, “101”/”111”: Reserved)

UserAddr[47:0] In Start address to write or read RAID0 in 512-byte unit. It is recommended to set

UserAddr[3:0]=”0000” to align 8 Kbyte which is page size for two SSDs (one SSD page size

is 4 Kbyte). Otherwise, write and read performance of some SSD models are reduced from

4Kbyte unaligned address.

UserLen[47:0] In Total transfer size to write/read SSD in 512 byte unit. Valid from 1 to (LBASize-UserAddr).

UserReq In Assert to ‘1’ to send the new command request and de-assert to ‘0’ after RAID0 starts the

operation by asserting UserBusy to ‘1’. This signal can be asserted to ‘1’ when RAID0 is Idle

(UserBusy=’0’). Command parameter (UserCmd, UserAddr, UserLen, and

CtmSubmDW0-DW15) must be valid and stable during UserReq=’1’.

UserAddr and UserLen are inputs for Write/Read command while CtmSubmDW0-DW15

are inputs for SMART/Flush command.

UserBusy Out Asserted to ‘1’ when RAID0 is busy.

New request must not be sent (UserReq to ‘1’) when RAID0 is busy (UserBusy=’1’).

LBASize[47:0] Out Total capacity of two SSDs in 512-byte unit. This value is valid after finishing Identify

command. It is recommended to run Identify command as the first command. Default value

is 0.

LBAMode Out LBA unit size of SSD. This signal is valid after finishing Identify command.

Default value is 0. ‘0’: LBA size = 512 byte, ‘1’: LBA size = 4 Kbyte.

RAID0 uses 512-byte stripe size, so 4 Kbyte LBA size is not supported.

UserError Out Error flag. Assert to ‘1’ when some bits of UserErrorType are not equal to 0.

The flag can be cleared to ‘0’ by asserting RstB to ‘0’.

UserErrorType[0-1][31:0] Out Error status, directly mapped from UserErrorType in each NVMe-IP. [0]-IP#0, [1]-IP#1.

Data I/F of dgIF typeS

UserFifoWrCnt[15:0] In Write data counter of Receive FIFO. Used to check full status of FIFO. When full status is

detected, the returned data transmission from Read command may be paused.

If the size of FIFO data count is less than 16-bit, please fill ‘1’ to remained upper bit.

UserFifoWrEn Out Asserted to ‘1’ to write data to Receive FIFO during running Read command.

UserFifoWrData[255:0] Out Write data bus of Receive FIFO. Valid when UserFifoWrEn=’1’.

UserFifoRdCnt[15:0] In Read data counter of Transmit FIFO. Used to check data size stored in FIFO. The

transmitted data packet for Write command may be paused when the counter shows empty

status. If the size of FIFO data count is less than 16-bit, please fill ‘0’ to remained upper bit.

UserFifoEmpty In The signal is unused.

UserFifoRdEn Out Asserted to ‘1’ to read data from Transmit FIFO during running Write command.

UserFifoRdData[255:0] In Read data returned from Transmit FIFO.

Valid in the next clock after UserFifoRdEn is asserted to ‘1’.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 12

Timing diagram of Raid0x2 module when running Write command is shown as follows.

Figure 2-9 Raid0x2 timing diagram in Write command

When user sends Write command to RAID0, data is forwarded from UserFIFO (U2IPFIFO)
to TxFIFO[0]-[1]. One TxFIFO is active to transfer 512-byte data at a time. After that, the
active NVMe channel is switched to the next channel for transferring data, following RAID0
behavior.
(1) stWaitData is the core state of Raid0x2 module. First, it checks the remained transfer

size. The operation is finished when the remained transfer size is equal to 0. Otherwise,
UserFifoRdCnt and TxFfWrCnt are monitored to confirm that at least 512-byte data is
stored in U2IPFIFO and TxFIFO has at least 1024-byte free space. If FIFOs are ready,
the write operation is started.
Note:
i) TxFfWrCnt of two channels are fed to multiplexer to select the active channel.
Therefore, it has one clock latency, comparing to UserFifoRdCnt.
ii) TxFfWrCnt is controlled by rNxtChSel which is the active channel in the next
“stTransfer” running. After starting the first transfer loop, rNxtChSel is increased for
scanning free space size of the next active channel FIFO.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 13

(2) State machines changes to stTransfer to start forwarding the write data from user logic to

TxFIFO.
(3) UserFifoRdEn is asserted to ‘1’ for 16 clock cycles to read 512-byte data from UserFIFO.
(4) When using standard FIFO, Read data (UserFifoRdData) is valid in the next cycle after

asserting Read enable (UserFifoRdEn).
(5) The data is forwarded to TxFIFO of the active channel, selected by rChSel[2] which is

two-clock latency signal of rChSel[0].
Note: rChSel[0] shows the active channel for transferring data in stTransfer state.

(6) When running in stTransfer state, rNxtChSel calculates the next active channel from
rChSel[0]. rNxtChSel is applied to select the active channel for reading TxFfWrCnt which
is read in stWaitData.

(7) The active channel for transferring data (rChSel[0]) is increased after finishing 512-byte
data transferring in stTransfer state.

(8) To reduce overhead time for running the next transfer loop, UserFifoRdCnt is monitored
in stTransfer state. If read counter shows at least 2x512-byte data is stored in FIFO, the
new transfer loop will be started in the next cycle by changing to stWaitData and
returning to step 1. Otherwise, the next state is stWaitFifo, described in step 9.

(9) stWaitFIFO is designed to wait until the current data transferring is completed and
UserFifoRdCnt is valid for monitoring. After waiting for three clock cycles, the state
changes to stWaitData to continue the next transfer or complete the operation.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 14

Figure 2-10 Raid0x2 timing diagram in Read command

When user sends Read command to RAID0, data is forwarded from RxFIFO[0]-[1] to
IP2UFIFO. Similar to Write command, one RxFIFO is active to transfer 512-byte at a time.
The active channel is switched to the next channel after finishing 512-byte data transferring,
following RAID0 behavior.
(1) stWaitData is the state to check the remained transfer length and FIFO status. In read

command, RxFfRdCnt and UserFifoWrCnt are monitored to confirm that at least
512-byte data is stored in RxFIFO and IP2UFIFO has at least 1024-byte free space. The
read operation is started when both FIFO status are ready and there is remained transfer
length.
Note:
i) RxFfRdCnt of two channels are fed to multiplexer to select the active channel.
Therefore, it has one clock latency, comparing to UserFifoWrCnt.
ii) RxFfRdCnt is controlled by rNxtChSel which is the active channel in the next
stTransfer running.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 15

(2) State machines changes to stTransfer to start forwarding the read data from RxFIFO to

user logic.
(3) RxFfRdEn of the active channel, selected by rChSel[0], is asserted to ‘1’ for 16 clock

cycles to read 512-byte data from RxFIFO.
(4) When using standard FIFO, Read data (RxFfRdData) is valid in the next cycle after

asserting Read enable (RxFfRdEn).
(5) The data of the active channel, selected by rChSel[2], is forwarded to UserFIFO.

Note: rChSel[2] is ChSel[0] signal with two-clock latency.
(6) When running in stTransfer state, rNxtChSel calculates the next active channel from

rChSel[0]. rNxtChSel is applied to select the active channel for reading RxFfRdCnt which
is monitored in stWaitData.

(7) The active channel for transferring data (rChSel[0]) is increased after finishing 512-byte
data transferring in stTransfer state.

(8) If there is remained transfer length, the state changes to stTransfer to start new data
transferring, similar to step 2. Otherwise, the next state is stWaitEnd, described in step 9.

(9) If all data are completely transferred, the state changes to stWaitEnd to wait until all
devices finishes operation by de-asserting Busy signal to ‘0’.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 16

2.3 CPU and Peripherals

32-bit AXI4-Lite bus is applied to be the bus interface for CPU accessing the peripherals such
as Timer and UART. The test system of NVMe-IP is connected with CPU as a peripheral on
32-bit AXI4-Lite bus for CPU controlling and monitoring. CPU assigns the different base
address and the address range to each peripheral for accessing one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. The base address and the range for accessing the test logic are defined in the CPU
system. Therefore, the hardware logic must be designed to support AXI4-Lite bus standard
for CPU writing and reading. LAxi2Reg module is designed to connect with the CPU system
as shown in Figure 2-11.

Figure 2-11 CPU and peripherals hardware

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32-bit data bus size, similar to
AXI4-Lite data bus size. Additionally, AsyncAxiReg includes asynchronous logic to support
clock crossing between CpuClk domain and UserClk domain.

UserReg includes the register file of the parameters and the status signals to control the other
modules, i.e., CtmRAM, IdenRAM, NVMeRAID0x2, and TestGen. More details of
AsyncAxiReg and UserReg are described as follows.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 17

2.3.1 AsyncAxiReg

Figure 2-12 AsyncAxiReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. So, the
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e., Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-12. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock-crossing registers. Similarly, Read control
I/F of AXI4-Lite bus are latched and transferred to be Read register interface while Read data
is returned from Register interface to AXI4-Lite through clock-crossing registers. In register
interface, RegAddr is shared signal for write and read access, so it loads the value from
LAxiAw for write access or LAxiAr for read access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signal for controlling read latency. The address of register
interface is shared for write and read transaction. Therefore, user cannot write and read the
register at the same time. The timing diagram of the register interface is shown in Figure 2-13.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 18

Figure 2-13 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be 4-byte data enable. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. Therefore, the
address can be used for selecting the returned data by using multiple layers of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 19

2.3.2 UserReg

Figure 2-14 UserReg Interface

UserReg consists of many registers for interfacing with other modules. The address for write
or read access is decoded by Address decoder to select the active register. There are six
regions mapping in UserReg, described as follows.
1) 0x0000 – 0x00FF : mapped to set the test parameters of NVMeRAID0x2 and

TestGen. This area is write-access only.
2) 0x0100 – 0x02FF : mapped to read the status of NVMeRAID0x2 and TestGen. This

area is read-access only.
3) 0x0400 – 0x04FF : mapped to set the test parameters of custom command

interface. This area is write-access only.
4) 0x0500 – 0x05FF : mapped to read the status of custom command interface. This

area is read-access only.
5) 0x10000 – 0x17FFF : mapped to read data from IdenRAM. This area is read-access

only.
6) 0x18000 – 0x1FFFF : mapped to custom command RAM interface. Although this area

supports both write and read access, the demo shows only read access by running
SMART command.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32-bit bus size, so write byte enable (RegWrByteEn) is not used.
To set the parameters in the hardware, the CPU must use 32-bit pointer to force 32-bit valid
value of the write data.

To read register, three-step multiplexers are designed to select the read data within each
address area. The lower bit of RegAddr is applied in each Register area to select active data.
Next, the address decoder uses the upper bit to select the read data from active area and
returns to CPU. Totally, the latency of read data is equal to three clock cycles. Therefore,
RegRdValid is created by RegRdReq with asserting three D Flip-flops. More details of the
address mapping within UserReg module are shown in Table 2-2.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 20

Table 2-2 Register Map

Address Register Name Description

Wr/Rd (Label in “nvmeraid0g3test.c”)

0x00000 – 0x000FF: Status signals of NVMeRAID0x2 and TestGen (Write access only)

BA+0x00000 User Address (Low) Reg [31:0]: Input to be bit[31:0] of start address in 512-byte unit

(UserAddr[31:0] of dgIF typeS for RAID0) (USRADRL_REG)

BA+0x00004 User Address (High) Reg [15:0]: Input to be bit[47:32] of start address in 512-byte unit

(UserAddr[47:32] of dgIF typeS for RAID0) (USRADRH_REG)

BA+0x00008 User Length (Low) Reg [31:0]: Input to be bit[31:0] of transfer length in 512-byte unit

(UserLen[31:0] of dgIF typeS for RAID0) (USRLENL_REG)

BA+0x0000C User Length (High) Reg [15:0]: Input to be bit[47:32] of transfer length in 512-byte unit

(UserLen[47:32] of dgIF typeS for RAID0) (USRLENH_REG)

BA+0x00010 User Command Reg [2:0]: Input to be user command (UserCmd of dgIF typeS for RAID0)

(“000”: Identify, “001”: Shutdown, “010”: Write RAID, “011”: Read RAID,

“100”: SMART, “110”: Flush, “101”/”111”: Reserved).

When this register is written, the command request is sent to RAID0.

After that, the IP starts operating the command.

(USRCMD_REG)

BA+0x00014 Test Pattern Reg [2:0]: Test pattern select

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR (PATTSEL_REG)

BA+0x00020 NVMe Timeout Reg [31:0]: Input to be timeout value of all NVMe-IPs

(TimeOutSet[31:0] of NVMe-IP) (NVMTIMEOUT_REG)

0x00100 – 0x002FF: Status signals of NVMeRAID0x2 and TestGen (Read access only)

BA+0x00100 User Status Reg [0]: UserBusy of dgIF typeS (‘0’: Idle, ‘1’: Busy)

[1]: UserError of dgIF typeS (‘0’: Normal, ‘1’: Error)

[2]: Data verification fail (‘0’: Normal, ‘1’: Error)

(USRSTS_REG)

BA+0x00104 Total device size (Low) Reg [31:0]: Mapped to LBASize[31:0] of RAID0 to show RAID0 capacity

(LBASIZEL_REG)

BA+0x00108 Total device size (High) Reg [15:0]: Mapped to LBASize[47:32] of RAID0 tp sjpw RAOD0 capacity

[31]: Mapped to LBAMode of RAID0 (LBASIZEH_REG)

(BA+0x00110)-

(BA+0x00117)

User Error Type CH#0-#1 Reg 0x0110: NVMe-IP#0, 0x0114: NVMe-IP#1,

[31:0]: Mapped to UserErrorType of NVMe-IP (USRERRTYPE0-1_REG)

(BA+0x00120)-

(BA+0x00127)

PCIe Status CH#0-#1 Reg 0x0120: NVMe-IP#0, 0x0124: NVMe-IP#1

[0]: PCIe linkup status from PCIe hard IP (‘0’: No linkup, ’1’: linkup)

[3:2]: Two lower bits to show PCIe link speed. MSB is bit[16].

(“000”: Not linkup, “001”: PCIe Gen1, “010”: PCIe Gen2,

“011”: PCIe Gen3, “111”: PCIe Gen4)

[7:4]: PCIe link width status from PCIe hard IP

(“0001”: 1-lane, “0010”: 2-lane, ”0100”: 4-lane, ”1000”: 8-lane)

[13:8]: Current LTSSM State of PCIe hard IP.

Please see more details of LTSSM value in PCIe hard IP datasheet

[16]: The upper-bit to show PCIe link speed of PCIe hard IP.

Two lower bits are bit[3:2].

(PCIESTS0-1_REG)

(BA+0x00130)-

(BA+0x00137)

Completion Status CH#0-#1 Reg 0x0130: NVMe-IP#0, 0x0134: NVMe-IP#1,

[15:0]: Status from Admin completion

(AdmCompStatus[15:0] of NVMe-IP)

[31:16]: Status from I/O completion

(IOCompStatus[15:0] of NVMe-IP)

(COMPSTS0-1_REG)

(BA+0x00140)-

(BA+0x00147)

NVMe CAP CH#0-#1 Reg 0x0140: NVMe-IP#0, 0x0144: NVMe-IP#1,

[31:0]: Mapped to NVMeCAPReg of NVMe-IP (NVMCAP0-1_REG)

(BA+0x00150)-

(BA+0x00157)

NVMe IP Test pin CH#0-#1 Reg 0x0150: NVMe-IP#0, 0x0154: NVMe-IP#1,

[31:0]: TestPin output from NVMe-IP. (NVMTESTPIN0-1_REG)

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 21

Address Register Name Description

Wr/Rd (Label in “nvmeraid0g3test.c”)

0x00100 – 0x002FF: Status signals of NVMeRAID0x2 and TestGen (Read access only)

BA+0x00200 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure position in Read

command (RDFAILNOL_REG)

BA+0x00204 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure position in Read

command (RDFAILNOH_REG)

BA+0x00208 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen module

(CURTESTSIZEL_REG)

BA+0x0020C Current test byte (High) Reg [24:0]: Bit[56:32] of the current test data size in TestGen module

(CURTESTSIZEH_REG)

(BA+0x00280)-

(BA+0x0029F)

Expected value Word0-7 Reg 0x280: Bit[31:0], 0x284: Bit[63:32], …, 0x29C: Bit[255:224] of

the expected data at the 1st failure position in Read command. (EXPPATW0-W7_REG)

(BA+0x002C0)-

(BA+0x002DF)

Read value Word0-7 Reg 0x2C0: Bit[31:0], 0x2C4: Bit[63:32], …, 0x2DC: Bit[255:224] of

the read data at the 1st failure position in Read command. (RDPATW0-W7_REG)

0x00400 – 0x00FFF: Custom command of NVMeRAID0x2

(BA+0x00400)-

(BA+0x0047F)

Custom Submission Queue

CH#0–#1 Reg

[31:0]: Submission queue entry of SMART and Flush command.

Input to be CtmSubmDW0-DW15 of NVMe-IP#0-#1 successively.

0x400: DW0, 0x404: DW1, …, 0x43C: DW15 of NVMe-IP#0

0x440: DW0, 0x444: DW1, …, 0x47C: DW15 of NVMe-IP#1

Wr (CTMSUBMQ0-1_REG)

(BA+0x00500)-

(BA+0x0051F)

Custom Completion Queue

CH#0–#1 Reg

[31:0]: CtmCompDW0-DW3 output from NVMe-IP#0-#1 successively.

0x500: DW0, 0x504: DW1, …, 0x50C: DW3 of NVMe-IP#0

0x510: DW0, 0x514: DW1, …, 0x51C: DW3 of NVMe-IP#1 Rd (CTMCOMPQ0-1_REG)

BA+0x00800 IP Version Reg [31:0]: IP version number (IPVersion[31:0] of NVMe-IP)

Rd (IPVERSION_REG)

0x10000 – 0x1FFFF: Identify RAM and Custom RAM

(BA+0x10000) –

(BA+0x13FFF)

Identify Controller Data CH#0-#1 0x10000-0x10FFF: 4Kbyte Identify controller data of NVMe-IP#0

0x11000-0x11FFF: 4Kbyte Identify namespace data of NVMe-IP#0

0x12000-0x12FFF: 4Kbyte Identify controller data of NVMe-IP#1

0x13000-0x13FFF: 4Kbyte Identify namespace data of NVMe-IP#1

Rd (IDENCTRL0-1_REG/

IDENNAME0-1_REG)

(BA+0x18000) –

(BA+0x1BFFF)

Custom command Ram CH#0-#1

0x18000-0x19FFF: NVMe-IP#0,

0x1A000-0x1BFFF: NVMe-IP#1

8Kbyte CtmRAM interface of NVMe-IP#0-#1.

Used to store 512-byte data output from SMART Command.

Wr/Rd (CTMRAM0-1_REG)

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 22

3 CPU Firmware

3.1 Test firmware (nvmeraid0g3test.c)

After system boot-up, CPU runs following steps to finish the initialization process.
1) CPU initializes its peripherals such as UART and Timer.
2) CPU waits until PCIe connection links up (PCIESTS0/1_REG[0]=’1’).
3) CPU waits until NVMeRAID0x2 completes initialization process (USRSTS_REG[0]=’0’).

The error message is displayed and the process stops when some errors are found.
4) CPU displays PCIe link status (the number of PCIe lanes and the PCIe speed) by reading

PCIESTS0/1_REG[16:2].
5) CPU displays the main menu. There are six menus for running six commands with RAID0,

i.e., Identify, Write, Read, SMART, Flush, and Shutdown.
More details of each command are described as follows.

3.1.1 Identify command

The step to operate Identify command is described as follows.
1) Set USRCMD_REG[2:0]=”000”. Next, Test logic generates command and asserts

command request to NVMeRAID0x2. After that, busy flag (USRSTS_REG[0]) changes
from ‘0’ to ‘1’.

2) CPU waits until the operation is completed or some errors are found by monitoring
USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, the data from Identify
command is stored to IdenRAM.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE0/1_REG[31:0]. Finally,
the process is stopped.

3) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU decodes SSD model name

from IdenRAM (IDENCTRL0/1_REG) and reads RAID0 capacity (LBASIZEL/H_REG)
from NVMeRAID0x2 output to display on the console. Finally, CPU checks LBA Size of
RAID0 (LBASIZEH_REG[31]). If LBA Size of RAID0 is 4Kbyte which is not supported by
RAID0 controller, the process is stopped and the error message is displayed.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 23

3.1.2 Write/Read command

The step to operate Write/Read command is described as follows.
1) Receive start address, transfer length, and test pattern from Serial console. When some

inputs are invalid, the operation is cancelled.
2) Get all inputs and then set to USRADRL/H_REG, USRLENL/H_REG, and

PATTSEL_REG.
3) Set USRCMD_REG[2:0]=”010” for Write command or “011” for Read command. After that,

the new command request is sent to NVMeRAID0x2 for running Write or Read command.
Busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.

4) CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring USRSTS_REG[2:0].

Bit[0] is de-asserted to ‘0’ when command is completed.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE0/1_REG[31:0] and the
process is stopped.
Bit[2] is asserted to ‘1’ when data verification is failed. The verification error message is
displayed on the console to show the error details. In this condition, CPU is still run until the
operation is done or user presses any key(s) to cancel operation.

During running the operation, current transfer size read from CURTESTSIZEL/H_REG is
displayed every second.

5) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU calculates and displays the
test result on the console, i.e., total time usage, total transfer size, and transfer speed.

3.1.3 SMART Command,

The step to operate SMART command is described as follows.
1) Set 16 Dwords of Submission queue entry (CTMSUBMQ0/1_REG) to be SMART

command value.
2) Set USRCMD_REG[2:0]=”100”. Next, Test logic generates command and asserts the

request to NVMeRAID0x2. After that, busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
3) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, the data returned from
SMART command is stored to CtmRAM.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE0/1_REG[31:0]. Finally,
the process is stopped.

4) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU decodes SMART command
information from CtmRAM (CTMRAM0/1_REG), i.e., Remaining Life, Percentage Used,
Temperature, Total Data Read, Total Data Written, Power On Cycles, Power On Hours,
and Number of Unsafe Shutdown.

More details of SMART log are described in NVM Express Specification.
https://nvmexpress.org/resources/specifications/

https://nvmexpress.org/resources/specifications/

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 24

3.1.4 Flush Command

The step to operate Flush command is described as follows.
1) Set 16 Dwords of Submission queue entry (CTMSUBMQ0/1_REG) to be Flush command

value.
2) Set USRCMD_REG[2:0]=”110”. Next, Test logic generates command and asserts the

request to NVMeRAID0x2. After that, busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
3) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, CPU goes back to the
main menu.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE0/1_REG[31:0]. Finally,
the process is stopped.

3.1.5 Shutdown Command

The step to operate Shutdown command is described as follows.
1) Set USRCMD_REG[2:0]=”001”. Next, Test logic generates command and asserts the

request to NVMeRAID0x2. After that, busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, the CPU goes to the
next step.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE0/1_REG[31:0]. Finally,
the process is stopped.

3) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, all SSDs and all NVMe-IPs change
to inactive status. The CPU cannot receive new command from user. The user must power
off the test system.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 25

3.2 Function list in Test firmware

int exec_ctm(unsigned int user_cmd)

Parameters user_cmd: 4-SMART command, 6-Flush command

Return value 0: No error, -1: Some errors are found in NVMeRAID0x2

Description Run SMART command or Flush command, following in topic 3.1.3
(SMART Command,) and 3.1.4 (Flush Command).

unsigned long long get_cursize(void)

Parameters None

Return value Read value of CURTESTSIZEH/L_REG

Description Read CURTESTSIZEH/L_REG and return read value as function result.

int get_param(userin_struct* userin)

Parameters userin: Three inputs from user, i.e., start address, total length in 512-byte
unit, and test pattern

Return value 0: Valid input, -1: Invalid input

Description Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

void iden_dev(void)

Parameters None
Return value None

Description Run Identify command, following in topic 3.1.1 (Identify command).

int setctm_flush(void)

Parameters None
Return value 0: No error, -1: Some errors are found in NVMeRAID0x2

Description Set Flush command to CTMSUBMQ0/1_REG and call exec_ctm
function to start Flush command.

int setctm_smart(void)

Parameters None
Return value 0: No error, -1: Some errors are found in NVMeRAID0x2

Description Set SMART command to CTMSUBMQ0/1_REG and call exec_ctm
function to start SMART command. Finally, decode and display SMART
information on the console

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 26

void show_error(void)

Parameters None

Return value None

Description Read USRERRTYPE0/1_REG, decode the error flag, and display error
message following the error flag.

void show_pciestat(void)

Parameters None

Return value None

Description Read PCIESTS0/1_REG until the read value from two read times is
stable. After that, display the read value on the console.

void show_result(void)

Parameters None

Return value None

Description Print total size by calling get_cursize and show_size function. After that,
calculate total time usage from global parameters (timer_val and
timer_upper_val) and display in usec, msec, or sec unit. Finally, transfer
performance is calculated and displayed in MB/s unit.

void show_size(unsigned long long size_input)

Parameters size_input: transfer size to display on the console

Return value None

Description Calculate and display the input value in Mbyte, Gbyte, or Tbyte unit

void show_smart_hex(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as hexadecimal unit.

void show_smart_raw(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as decimal unit when the input value is less than 4
MB. Otherwise, display overflow message.

void show_smart_unit(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as GB or TB unit. When the input value is more
than limit (500 PB), the overflow message is displayed instead.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 27

void show_vererr(void)

Parameters None

Return value None

Description Read RDFAILNOL/H_REG (error byte address), EXPPATW0-W7_REG
(expected value), and RDPATW0-W7_REG (read value) to display
verification error details on the console.

void shutdown_dev(void)

Parameters None
Return value None

Description Run Shutdown command, following in topic 3.1.5 (Shutdown Command)

int wrrd_dev(unsigned int user_cmd)

Parameters user_cmd: 2-Write command, 3-Read command
Return value 0: No error, -1: Receive invalid input or some errors are found.

Description Run Write command or Read command, following in topic 3.1.2
(Write/Read command)

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 28

4 Example Test Result

The example test result when running RAID0 demo system by using two 512 GB Samsung 970
Pro SSDs is shown in Figure 4-1.

Figure 4-1 Performance of 2-ch RAID0 demo by using Samsung Pro 970 SSD

When running 2-ch RAID0 with 2 SSDs@Gen3 speed, write performance is about 4600
Mbyte/sec and read performance is about 6600 Mbyte/sec.

dg_nvme_raid0x2_refdesign_en.doc

1-Jul-21 Page 29

5 Revision History

Revision Date Description

1.0 6-Oct-17 Initial version release

1.1 5-Jun-18 Update register map and description

1.2 29-Jun-20 Update register map and support flush and shutdown command

1.3 31-Mar-21 Add info in SMART command

1.4 1-Jul-21 Update RAID0 information

Copyright: 2017 Design Gateway Co,Ltd.

