
dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 1

NVMe-IP DDR reference design manual
Rev1.3 27-Jul-22

1 Introduction

Figure 1-1 NVMe-IP with and without DDR demo comparison

This reference design is modified from standard NVMe-IP demo by using DDR to be data buffer
instead of FIFO, as shown in yellow block of Figure 1-1 . DDR is applied to the system that
requires large data buffer to transfer data as sustain rate but the used SSD has long pause time
while writing the data.

In Write command, some SSDs has long pause time which cannot accept more Write data from
user logic. During SSD pause time, the data from the source (TestGen) must be stored in data
buffer. If the SSD is paused for long time, the buffer size must be large enough by using DDR
instead of FIFO. The minimum buffer size is equal to (the maximum pause time of SSD in Write
command x data input rate). This is general requirement for data logger system.

In Read command, data from SSD is stored in DDR before forwarding to user logic (TestGen).
Sometimes SSD may pause data transmission, so the buffer must have enough data for user
reading until the SSD transfers the next read data. Similar to Write command, the minimum buffer
size is equal to (the maximum pause time of SSD in Read command x data output rate). The
application that requires to read data as sustain rate is the high-resolution display system.

Note: More information of NVMe-IP demo that uses FIFO can be download from following link.
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_en.pdf

https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_en.pdf

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 2

2 Hardware overview

Figure 2-1 NVMe-IP with DDR demo hardware

The hardware system can be divided to four groups following the function, i.e., Test function
(TestGen), DDR controller (DdrIP, AxiMtWr, AxiMtRd, AxiTxFIFO, and AxiRxFIFO), NVMe
function (IdenRAM, CtmRAM, NVMe-IP, and PCIe block), and CPU system (CPU and LAxi2Reg).
Similar to standard NVMe-IP demo, TestGen generates and verifies test data with NVMe-IP.
However, it is modified to transfer data at constant rate instead of the best performance rate. The
data is transferred with DDR, the system data buffer. The clock frequency of TestGen and
NVMe-IP user interface use the same clock as PCIe clock frequency, 250 MHz.

The user interface of DDR controller is AXI4 bus which has 512-bit data and runs at 300 MHz.
AxiMtWr and AxiMtRd are designed to transfer data between DDR and AxiFIFO in Write
command and Read command, respectively. AxiTxFIFO and AxiRxFIFO are asynchronous FIFO
and asymmetric FIFO for interface between 512-bit on AXI4 bus and 128-bit on NVMe/TestGen.

IdenRAM and CtrmRAM are included for running Identify command and SMART command
respectively. The NVMe command can be selected by the user which is controlled via Serial
console. UART interface is a part of CPU system. The user can configure some test parameters
such as the data rate of TestGen, the buffer size, NVMe command – Write, Read, etc., and the
parameters for running the command. CPU interface with hardware is AXI4-Lite bus, so LAxi2Reg
is the adapter logic to convert AXI4-Lite bus to be register interface for controlling the hardware.
More details of the hardware are described as follows.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 3

2.1 TestGen

Figure 2-2 TestGen interface

TestGen module is the test logic to send test data to DDR through AxiTxFIFO when operating
Write command. On the other hand, the test data is applied to be the expected value to verify
the read data from DDR through AxiRxFIFO when operating Read command. Besides, the
duty cycle for asserting write enable and read enable of FIFO are controlled by pulse-width
control logic. The duty cycle of enable time is set by the user. The error is asserted if
AxiTxFIFO is overflow or AxiRxFIFO is underflow.

Register file in the TestGen receives test parameters from user, i.e., total transfer size,
transfer direction, and test pattern. To control transfer size, the counter is designed to count
total amount of transferred data. The details of hardware logic within TestGen module are
shown in Figure 2-3.

Figure 2-3 TestGen hardware

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 4

The main feature of TestGen is to control data rate for transferring with FIFO to check the best
write performance and read performance of the SSDs in sustain rate. The user sets two
parameters, NmtTrnRate and DmtTrnRate which are 4-bit signals. Next, Pulse Generator
(4-bit counter) loads both parameters and then asserts enable pulse (rTrnRateEn) for
NmtTrnRate cycles in every DmtTrnRate cycle. Therefore, transfer data rate for writing FIFO
and reading FIFO is equal to (NmtTrnRate/DmtTrnRate) x Clock Frequency (300 MHz) x
128-bit or (NmtTrnRate/DmtTrnRate) x 4800 Mbyte/sec, as shown in Figure 2-4.

Figure 2-4 rTrnRateEn Timing diagram

After that, rTrnRateEn is fed to the logic for asserting FIFO write enable or FIFO read enable.
Timing diagram to assert rWrFfWrEn and rRdFfRdEn is shown in Figure 2-5.

Figure 2-5 rWrTrans/rRdTrans Timing diagram

1) When user sets command register to start Write/Read command, WrPattStart/RdPattStart

is asserted to ‘1’ for one cycle. After that, rWrTrans/rRdTrans is asserted to ‘1’ until the
operation is done, monitored by rDataCnt.

2) While transferring data, rWrFfWrEn/rRdFfRdEn is asserted to ‘1’ when rTrnRateEn=’1’
and rWrTrans/rRdTrans=’1’.

3) To control the amount of transferred data, the data counter (rDataCnt) is counted when
rWrFfWrEn/rRdFfRdEn is asserted to ‘1’.

4) rDataCnt is counted from 0 to N-1 for transferring N data. EndSize value is set by (total
transfer size – 1). rWrTrans/rRdTrans and rWrFfWrEn/rRdFfRdEn are de-asserted to ‘0’
when the last data (rDataCnt=EndSize) is transferred to FIFO.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 5

While transferring data to FIFO, the error monitoring logic is operating. When running Write
command, WrFfFull is monitored. TrnError[1] is overflow error flag which is asserted to ‘1’
when WrFfFull is equal to ‘1’. Also, when running Read command, RdFfEmpty is monitored.
TrnError[2] is underflow error flag which is asserted to ‘1’ when RdFfEmpty is equal to ‘1’ but
Read operation is not finished. If TrnError[1] or [2] is asserted, it is expected that the transfer
rate is more than the SSD characteristic. The user should try to reduce the transfer rate until
there is no error flag asserted.

Figure 2-6 Test pattern format in each 512-byte data for Increment/Decrement/LFSR pattern

Pattern Generator block creates test data for writing to FIFO (rWrFfWrData) in Write
command or using to be expected data to compare to read data from FIFO (RdFfRdData) in
Read command. There are five patterns that can be selected, controlled by PattSel, i.e., all
zero, all one, 32-bit incremental pattern, 32-bit decremental pattern, and LFSR pattern. When
creating all-zero or all-one pattern, every bit of data is set to zero or one, respectively. While
other patterns are designed by separating the data as two parts to create unique test data in
every 512-byte data, as shown in Figure 2-6.

512-byte data consists of 64-bit header in Dword#0 and Dword#1 and the test data in
remaining words of 512-byte data (Dword#2 – Dword#127). The header is created by using
the address in 512-byte unit, the output of Address counter block (rTrnAddr). The initial value
of the address counter is set by user and the value is increased when finishing transferring
each 512-byte data. Remaining Dwords (DW#2 – DW#127) depends on pattern selector
which may be 32-bit incremental data, 32-bit decremental data, or LFSR counter. 32-bit
incremental data is designed by using the data counter (rDataCnt). The decremental data is
designed by connecting NOT logic to incremental data.

The LFSR pattern is designed by using LFSR counter. The equation of LFSR is x^31 + x^21 +
x + 1. To create 128-bit LFSR data, the look-ahead technique is applied for generate four
32-bit LFSR data within one clock cycle.

When running Read command, TrnError[0] is designed to be data verification fail flag. This bit
is asserted to ‘1’ when the received data (RdFfRdData) is not equal to expected data.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 6

2.2 NVMe

Figure 2-7 NVMe hardware

Figure 2-7 shows the interface of NVMe-IP in the reference design. The user interface of
NVMe-IP consists of control interface and data interface. The control interface receives the
command and the parameters via dgIF typeS or custom command interface, depending on
the command. Custom command interface is applied when the command is SMART
command or Flush command. Otherwise, dgIF typeS is applied.

The data interface of NVMe-IP has four signal groups, i.e., FIFO input interface (dgIF typeS),
FIFO output interface (dgIF typeS), custom command RAM interface, and Identify interface.
All data bus width is 128-bit. The custom command RAM interface is bi-directional interface
while the others are one directional interface. In the reference design, the custom command
RAM interface is used to transfer data of SMART command from NVMe-IP to LAxi2Reg only.
Another direction is not used.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 7

2.2.1 NVMe-IP

NVMe-IP implements NVMe protocol of the host side to access one NVMe SSD directly
without PCIe switch connection. NVMe-IP supports six commands, i.e., Write, Read, Identify,
Shutdown, SMART, and Flush. NVMe-IP can connect to the PCIe hard IP directly. More
details of NVMe-IP are described in datasheet.
https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_en.pdf

2.2.2 Integrated Block for PCIe
This block is the hard IP in Xilinx device which implements Physical, Data Link, and
Transaction Layers of PCIe specification. More details are described in Xilinx document.
PG054: 7 Series FPGAs Integrated Block for PCI Express
PG023: Virtex-7 FPGA Gen3 Integrated Block for PCI Express
PG156: UltraScale Devices Gen3 Integrated Block for PCI Express
PG213: UltraScale+ Devices Integrated Block for PCI Express

2.2.3 Dual port RAM

Two dual port RAMs, CtmRAM and IdenRAM, store data from Identify command and SMART
command, respectively. IdenRAM is simple dual-port RAM which has one read port and one
write port. The data size of Identify command is 8 Kbytes, so IdenRAM size is 8Kbyte.
NVMe-IP and LAxi2Reg have different data bus size, so IdenRAM is asymmetric RAM that
has the different bus size for write port and read port. The data interface of NVMe-IP (write
port) is 128-bit while the interface of LAxi2Reg (read port) is 32-bit. Besides, NVMe-IP has
double word enable to write only 32-bit data in some cases. The RAM setting on Xilinx IP
wizard supports the write byte enable. Therefore, small logic is designed to convert double
word enable to be write byte enable as shown in Figure 2-8

Figure 2-8 Byte write enable conversion logic

Bit[0] of WrDWEn with WrEn signal are the inputs to AND logic. The output of AND logic is fed
to bit[3:0] of IdenRAM byte write enable. Bit[1], [2], and [3] of WrDWEn are applied to be
bit[7:4], [11:8], and [15:12] of IdenRAM write byte enable, respectively.

Comparing with IdenRAM, CtmRAM is implemented by true dual-port RAM (two read ports
and two write ports) with byte write enable. The small logic to convert double word enable of
custom interface to be byte write enable must be used, similar to IdenRAM. True dual-port
RAM is used to support the additional features when the customized custom command needs
the data input. To support SMART command, using simple dual port RAM is enough. Though
the data size returned from SMART command is 512 bytes, CtmRAM is implemented by
8Kbyte RAM for customized custom command.

https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_en.pdf

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 8

2.3 DdrCtrl

Figure 2-9 DdrCtrl hardware

This module is designed to interface with DDR memory which is the data buffer to support
transferring data as sustain rate in this system. MIG is Xilinx IPcore to control external
memory such as DDR4. The IP includes clock generator to generate many clock sources for
interface with DDR. This reference design uses clock generator inside MIG to generate
CpuClk (100 MHz) for running CPU and its peripherals. AxiClk is clock output from MIG to be
user interface of DDR controller. AxiClk frequency is 300 MHz for running DDR4 at 1200 MHz.

AxiMtWr and AxiMtRd decode the command request from LAxi2Reg. After that, data is
transferred between MIG and AxiTxFIFO/AxiRxFIFO, following the current command (Write
or Read). AxiMtWr and AxiMtRd are designed to be AXI4 master mode for connecting with
DDR which is run in Slave mode by using 512-bit data bus. Two master channels are created
to connect with AxiMtWr and AxiMtRd. Though AXI4 interface supports bi-directional
transferring, only one direction is applied for AxiMtWr/AxiMtRd. AxiMtWr is designed to Write
DDR while AxiMtRd is designed to read DDR. All AXI4 modules are run in AxiClk domain.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 9

2.3.1 AxiMtWr

Figure 2-10 AxiMtWr hardware

AxiMtWr receives BufSize signal to specify the buffer size usage in this transfer. 4-bit signal is
applied to select 16 buffer sizes, starting from 64 Kbytes to 2 Gbytes. The core engine of
AxiMtWr is state machine which handles to generate write request to DDR and start data
transferring from AxiTxFIFO to DDR. As shown in Figure 2-10, the interface of AxiMtWr is
separated to two groups, i.e., command interface and data interface.

The sequence of write transaction by using AXI4 interface is as follows.
1) Send address and address control signals (AxiAwAddr, AxiAwLen, and AxiAwValid)
2) Send data and data control signals (AxiwData and AxiwValid)
3) Wait response (AxiBValid).

From above specification, six state machines are designed to be the core controller.
1) stIdle: This is the first state which receives the write request from LAxi2Reg (AxiWrReq).

The state changes to the next state (stChkWrRdy) when the new request is received. At
the same time, Length counter loads total transfer size from AxiWrLen and Address
counter is reset to 0.

2) stChkWrRdy: This state waits until AxiTxFIFO and DDR buffer are ready for transferring
data. At least 512-byte data must be available in AxiTxFIFO, monitored from AxiFfRdCnt.
Also, rBufWrCntPad (the signal to show the amount of data in the buffer) is read to confirm
that free space in DDR is more than 512 bytes. After that, it changes to the next state,
stGenWrReq.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 10

3) stGenWrReq: This state generates write request to DDR (AxiAwValid). Also, other

parameters, write address (AxiAwAddr) and write length (AxiAwLen), must be valid. It
changes to the next state, stWrTrans, when the MIG accepts the request by asserting
AxiAwReady to ‘1’.

4) stWrTrans: This state transfers the data to DDR. AxiFfRdEn is asserted to ’1’ to read data
from FIFO. After that, the read data (AxiFfRdData) is loaded to the latch register to be the
output of AxiwData. At the same time, AxiwValid is asserted to ‘1’ to be data valid for DDR.
Two-step pipeline registers in data path are designed to solve timing constraint problem.
rBurstCnt counts the amount of data in the current burst transfer. Data transfer state is
completed after rBurstCnt shows that current data is the last data. AxiwLast is asserted
to ’1’ for sending the last data in the burst transfer. After that, it changes to the next state,
stWtResp.

5) stWtResp: This state waits the response returned from DDR to confirm the previous data
transferring is completed. AxiBValid is asserted to ‘1’ by MIG if DDR receives all write data
completely. After that, the remaining transfer size (rTrnLenCnt) is read. If rTrnLenCnt is
not equal to 0, the next state is stWtBufCnt. Otherwise, the state is returned to stIdle.
rTrnLenCnt loads total transfer size from AxiWrLen when receiving the request from
LAxi2Reg. rTrnLenCnt is decreased after finishing each burst transfer loop.

6) stWtBufCnt: This state is run for one clock cycle to wait until rBufWrCntPad is updated and
ready for using in stChkWrRdy. Next, it returns to stChkWrRdy to start transferring the next
data.

From above sequence, address, data, and response in each burst loop are run sequentially
by using one state machine, not pipelined transferring for simple design. To improve transfer
performance, the burst size of each loop can be set by four values, i.e., 512 bytes, 1024 bytes,
2048 bytes, and 4096 bytes. The value of burst size (AxiAwLen) is calculated by BurstLenCal
block. The burst size depends on several conditions. First, the amount of available data in
AxiTxFIFO (monitored by AxiFfRdCnt) and the free space size in DDR (monitored by
rBufWrCntPad). Second, the value of AxiAwAddr that must be aligned to the burst size to
avoid overlapped DDR area. Last is the remaining transfer size, rTrnLenCnt. For example,
burst size is set to 4096 bytes when following conditions are met.

i) Remaining transfer size (rTrnLenCnt) is more than or equal to 4096 bytes (Bit[47:3] of

rTrnLenCnt is not equal to 0).
ii) Current write address (AxiAwAddr) is aligned to 4096 bytes (Bit[11:0] of AxiAwAddr is

equal to 0).
iii) Data in AxiTxFIFO (AxiFfRdCnt) is more than or equal to 4096 bytes (Bit[15:6] of

AxiFfRdCnt is not equal to 0).
iv) Data in DDR (rBufWrCntPad) has at least 8 Kbyte free space (Bit[30:13] of rBufWrCntPad

is not equal to all 1).

After AxiAwLen is completely calculated, this signal is fed to Address counter to calculate the
next write address (AxiAwAddr). Also, it is fed to Length Counter to calculate remaining
transfer size (rTrnLenCnt).

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 11

Figure 2-11 shows the example operation of AxiMtWr when burst size is equal to 8 for
transferring 512-byte data.

Figure 2-11 AxiMtWr Timing diagram when burst size = 512 byte

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 12

1) After AxiWrReq is asserted to ‘1’, state machine changes to stChkWrRdy.
2) If FIFO and DDR are ready to transfer 512-byte data, state machine will change to next

state, stGenWrReq. Two functions are run in stGenWrReq. First, asserts Write request
(AxiAwValid) to ’1’ until AxiAwReady is asserted to ’1’. Second, asserts AxiFfRdEn to 1 for
two clock cycles to read two data from AxiTxFIFO.

3) After write request is received (AxiAwValid=’1’ and AxiAwReady=’1’), state machine
changes to stWrTrans.

4) Eight data is transferred in stWrTrans by asserting AxiwValid to ‘1’ for 8 cycles. At the
same time, AxiwData is valid by loading the previous data from AxiFfRdData.

5) While transferring data, rBurstCnt is decreased by AxiFfRdEn signal.
6) When rBurstCnt=2 and AxiwReady=’1’, rAxiwLast[0] is asserted to ‘1’ to pause data

reading from FIFO by de-asserting AxiFfRdEn to ’0’. After that, AxiwLast (the previous
status of rAxiwLast[0]) is asserted to ‘1’ with the last data available on the bus to complete
data transfer.

7) State machine changes to stWtResp to wait until AxiBValid asserting to ‘1’.
8) State machine changes to stWtBufCnt which is run for one cycle.
9) State machine enters to stIdle when total data are transferred. Otherwise, state machine

returns to stChkWrRdy to start transferring the next data.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 13

2.3.2 AxiMtRd

Figure 2-12 AxiMtRd hardware

Similar to AxiMtWr, AxiMtRd receives BufSize signal to specify the buffer size usage in this
transfer. 4-bit signal is applied to select 16 buffer sizes, starting from 64 Kbytes to 2 Gbytes.
The core engine of AxiMtRd is state machine which handles to generate read request to DDR
and wait until the data is returned from DDR. As shown in Figure 2-12, the interface of
AxiMtRd is separated to two groups, i.e., command interface and data interface.

The sequence of read transaction by using AXI4 interface is as follows.
1) Send address and address control signals (AxiArAddr, AxiArLen, and AxiArValid)
2) Receive data and data control signals (AxirValid, AxirLast, and AxirData)

From above specification, four state machines are designed to be the core controller.
1) stIdle: This is the first state which receives the read request from LAxi2Reg (AxiRdReq).

The state changes to the next state (stChkRdRdy) when the new request is received. At
the same time, Length counter loads total transfer size from AxiRdLen and Address
counter is reset to 0.

2) stChkRdRdy: This state has two functions. First, check remained transfer length
(rTrnLenCnt). If total data are completely transferred (rTrnLenCnt=0), the next state will be
stIdle. Otherwise, it prepares to transfer the data by monitoring buffer status. Therefore,
the second function of this state is checking that AxiRxFIFO and DDR buffer are ready for
transferring data. At least 512-byte data must be available in DDR, monitored from
BufRdCnt. Also, AxiFfWrCnt is read to confirm that free space in AxiRxFIFO is more than
512 bytes. After that, it changes to the next state, stGenWrReq.

3) stGenRdReq: This state generates read request to DDR (AxiArValid). Also, other
parameters, read address (AxiArAddr) and read length (AxiArLen), must be valid. It
changes to the next state, stRdTrans, when the MIG accepts the request by asserting
AxiArReady to ‘1’.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 14

4) stRdTrans: This state transfers the data from DDR to AxiRxFIFO. Read data (AxirData)

and Read data valid (AxirValid) are fed to be write data and write enable of AxiRxFIFO
(AxiFfWrData and AxiFfWrEn). After receiving the last data of the burst transfer
(AxirValid=’1’ and AxirLast=’1’), the state returns to stChkRdRdy.

Similar to AxiMtWr, the burst size of each loop can be set by four values, i.e., 512 bytes, 1024
bytes, 2048 bytes, and 4096 bytes. The value of burst size (AxiArLen) is calculated by
BurstLenCal block. The burst size depends on several conditions. First, the amout of
available data in DDR (monitored by BufRdCnt) and the free space size in AxiRxFIFO
(monitored by AxiFfWrCnt). Second, the value of AxiArAddr that must be aligned to the burst
size to avoid overlapped DDR area. Last is the remaining transfer size, rTrnLenCnt. For
example, burst size is set to 4096 bytes when following conditions are met.

i) Remaining transfer size (rTrnLenCnt) is more than or equal to 4096 bytes (Bit[47:3] of

rTrnLenCnt is not equal to 0).
ii) Current read address (AxiArAddr) is aligned to 4096 bytes (Bit[11:0] of AxiArAddr is equal

to 0).
iii) Data in DDR (BufRdCnt) is more than or equal to 4096 bytes (Bit[30:12] of BufRdCnt is not

equal to 0).
iv) Data in AxiRxFIFO (AxiFfWrCnt) has at least 8 Kbyte free space (Bit[15:7] of AxiFfWrCnt

is not equal to all 1).

After AxiArLen is completely calculated, this signal is fed to Address counter to calculate the
next write address (AxiArAddr). Also, it is fed to Length Counter to calculate the remaining
transfer size (rTrnLenCnt).

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 15

Figure 2-13 shows the example operation of AxiMtRd when burst size is equal to 8 for
transferring 512-byte data.

Figure 2-13 AxiMtRd Timing diagram when burst size = 512 byte

1) After AxiRdReq is asserted to ‘1’, state machine changes to stChkRdRdy.
2) If available data in DDR is at least 512 bytes and free space in AxiRxFIFO is more than

512 bytes, it will change to the next state, stGenRdReq, for starting data transferring.
3) AxiArValid is asserted to ‘1’ to generate read request to DDR.
4) AxiArValid is de-asserted to ‘0’ after DDR accepts the request by asserting AxiArReady to

‘1’. Also, state machine changes to stRdTrans.
5) Eight data is transferred in stRdTrans by asserting AxirValid to ‘1’ for 8 cycles. At the same

time, AxirData is valid. AxirData are forwarded to store to AxiRxFIFO.
6) AxirLast and AxirValid are asserted to ‘1’ when the last data of the burst transfer are

transferred from DDR. After that, the state returns to stChkRdRdy.
7) Before starting the new transfer loop, the remained transfer length (rTrnLenCnt) is read. If

rTrnLenCnt is equal to 0, the next state will be stIdle to complete the operation. Otherwise,
repeat step 2 to wait until FIFO and DDR are ready for data transferring.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 16

2.4 CPU and Peripherals

32-bit AXI4-Lite bus is applied to be the bus interface for CPU accessing the peripherals such
as Timer and UART. The test system of NVMe-IP connects with CPU as a peripheral on 32-bit
AXI4-Lite bus for CPU controlling and monitoring. CPU assigns the different base address
and the address range to each peripheral for accessing one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. Therefore, the hardware logic must be designed to support AXI4-Lite bus standard
for CPU writing and reading. LAxi2Reg module is designed to connect with the CPU system
as shown in Figure 2-14.

Figure 2-14 CPU and peripherals hardware

LAxi2Reg consists of AsyncAxiReg, UserReg, and AsyncCtrl. AsyncAxiReg is designed to
convert the AXI4-Lite signals to be the simple register interface which has 32-bit data bus size,
similar to AXI4-Lite data bus size. Besides, AsyncAxiReg includes asynchronous logic to
support clock domain crossing between CpuClk domain and UserClk domain.

UserReg includes the register file of the parameters and the status signals to control the other
modules, i.e., CtmRAM, IdenRAM, NVMe-IP, TestGen, and DdrCtrl I/F.

While clock domain of DdrCtrl is DdrClk, clock domain of UserReg is UserClk. Therefore,
AsyncCtrl includes asynchronous logic to support clock domain crossing between between
DdrClk domain and UserClk domain. More details of each hardware are described as follows.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 17

2.4.1 AsyncCtrl

There are two styles to transfer the signal from source clock domain to destination clock
domain. First, the signal which is one-bit signal or stable value for long time. The signal is
forwarded to D Flip-Flop to synchronous on destination clock domain. Second, the bus signal
that has multiple bits. This signal must be fed to latched register to generate stable value.
After that, the stable signal is transferred to the destination clock domain by using D Flip-Flop.

2.4.2 AsyncAxiReg

Figure 2-15 AsyncAxiReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. So, the
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e., Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-15. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock domain crossing registers. Similarly, Read
control I/F of AXI4-Lite bus are latched and transferred to be Read register interface while
Read data is returned from Register interface to AXI4-Lite through clock domain crossing
registers. In Register interface, RegAddr is shared signal for write and read access, so it loads
the value from LAxiAw for write access or LAxiAr for read access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction. Therefore, user cannot write and read the
register at the same time. The timing diagram of the register interface is shown in Figure 2-16.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 18

Figure 2-16 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. In read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. Therefore, the
address can be used for selecting the returned data by using multiple layers of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 19

2.4.3 UserReg

Figure 2-17 UserReg Interface

The logic inside UserReg consists of Address decoder, RegFile, and RegMux. The address
decoder decodes the address which is requested from AsyncAxiReg and then selects the
active register for write or read transaction. The address range assigned in UserReg is split
into six areas, as shown in Figure 2-17.
1) 0x0000 – 0x00FF : mapped to set the command with the parameters of NVMe-IP,

TestGen, and DdrCtrl. This area is write-access only.
2) 0x0100 – 0x01FF : mapped to read the status signals of NVMe-IP, TestGen, and

DdrCtrl. This area is read-access only.
3) 0x0200 – 0x02FF : mapped to set the test parameters of custom command

interface. This area is write-access only.
4) 0x0300 – 0x03FF : mapped to read the status of custom command interface. This

area is read-access only.
5) 0x2000 – 0x3FFF : mapped to read data from IdenRAM. This area is read-access

only.
6) 0x4000 – 0x5FFF : mapped to custom command RAM interface. Although this area

supports both write and read access, the demo shows only read access by running
SMART command.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware that is
NVMe-IP, DdrCtrl, TestGen, Iden RAM, or CtmRAM. The register file inside UserReg is 32-bit
bus size. Therefore, write byte enable (RegWrByteEn) is not applied in the test system and
the CPU uses 32-bit pointer to set the hardware register.

To read register, two-step multiplexers select the data to return to CPU by using the address.
The lower bit of RegAddr is fed to the submodule to select the active data from each
submodule. While the upper bit is applied in UserReg to select the returned data from each
submodule. Totally, the latency time of read data is equal to two clock cycles. Therefore,
RegRdValid is created by RegRdReq with asserting two D Flip-flops. More details of the
address mapping within UserReg module are shown in Table 2-1.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 20

Table 2-1 Register Map

Address Register Name Description

Rd/Wr (Label in “nvmeddrterst.c”)

0x0000 – 0x00FF: Status signals of NVMe-IP, TestGen, and DdrCtrl (Write access only)

BA+0x000 User Address (Low) Reg [31:0]: Input to be bit[31:0] of start address in 512-byte unit

(UserAddr[31:0] of dgIF typeS for NVMe-IP) (USRADRL_REG)

BA+0x004 User Address (High) Reg [15:0]: Input to be bit[47:32] of start address in 512-byte unit

(UserAddr[47:32] of dgIF typeS for NVMe-IP) (USRADRH_REG)

BA+0x008 User Length (Low) Reg [31:0]: Input to be bit[31:0] of transfer length in 512-byte unit

(UserLen[31:0] of dgIF typeS for NVMe-IP) (USRLENL_REG)

BA+0x00C User Length (High) Reg [15:0]: Input to be bit[47:32] of transfer length in 512-byte unit

(UserLen[47:32] of dgIF typeS for NVMe-IP) (USRLENH_REG)

BA+0x010 User Command Reg [2:0]: Input to be user command (UserCmd of dgIF typeS for NVMe-IP)

000b: Identify, 001b: Shutdown, 010b: Write SSD, 011b: Read SSD,

100b: SMART, 110b: Flush, 101b/111b: Reserved

When this register is written, the command request is sent to NVMe-IP.

After that, the IP starts operating the command.

(USRCMD_REG)

BA+0x014 Test Pattern Reg [2:0]: Select test pattern

000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1, 100b-LFSR (PATTSEL_REG)

BA+0x020 NVMe Timeout Reg [31:0]: Mapped to TimeOutSet[31:0] of NVMe-IP

(NVMTIMEOUT_REG)

BA+0x040 Transfer Ratio Reg Set the sustain rate for write or read access of TestGen module.

[11:8]: the numerator of the ratio, [3:0]: the denominator of the ratio.

Transfer Rate (bit/sec) = (Numerator/Denominator) x UserClk (250MHz) x

128-bit

(TRNRATIO_REG)

BA+0x044 DDR Read threshold [3:0]: The threshold value of DDR buffer before starting reading. TestGen

module waits until the data in DDR is more than or equal to the threshold

value and then it starts reading the data from DDR as sustain rate in Read

command. Valid from 0 - 15.

0: 64 Kbyte, 1: 128 Kbyte, 2: 256 Kbyte, 3: 512 Kbyte,

 4: 1 Mbyte, 5: 2 Mbyte, 6: 4 Mbyte, 7: 8 Mbyte,

 8: 16 Mbyte, 9: 32 Mbyte, 10: 64 Mbyte, 11: 128 Mbyte,

12: 256 Mbyte, 13: 512 Mbyte, 14: 1 Gbyte, 15: 2 Gbyte

(DDRRDTHR_REG)

BA+0x048 DDR Size Setting Reg [3:0]: Setting buffer size for usage. Valid from 0 – 15. The mapped value

from 4-bit signal to the buffer size is similar to DDRRDTHR_REG. DDRBUFFSET_REG

0x0100 – 0x01FF: Status signals of NVMe-IP, TestGen, and DdrCtrl (Read access only)

BA+0x0100 User Status Reg [0]: UserBusy of dgIF typeS (‘0’: Idle, ‘1’: Busy)

[1]: UserError of dgIF typeS (‘0’: Normal, ‘1’: Error)

[2]: Data verification fail (‘0’: Normal, ‘1’: Error)

[3]: Error from buffer overflow during Write command

(‘0’: Normal, ‘1’: AxiTxFIFO is full during running sustain write)

[4]: Error from buffer underflow during Read command

(‘0’: Normal, ‘1’: AxiRxFIFO is empty during running sustain read)

[5]: Busy flag of write operation from TestGen

(‘0’: No operation, ‘1’: Write is operating)

[6]: Busy flag of read operation from TestGen

(‘0’: No operation, ‘1’: Read is operation)

Note that this flag is asserted after data in DDR is equal or more than

threshold value, set by DDRRDTHR_REG.

[7]: Busy flag of write operation from DdrCtrl

(‘0’: No operation, ‘1’: Write is operating)

[8]: Busy flag of read operation from DdrCtrl

(‘0’: No operation, ‘1’: Write is operating)

(USRSTS_REG)

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 21

Address Register Name Description

Rd/Wr (Label in “nvmeddrterst.c”)

0x0100 – 0x01FF: Status signals of NVMe-IP, TestGen, and DdrCtrl (Read access only)

BA+0x0104 Total disk size (Low) Reg [31:0]: Mapped to LBASize[31:0] of NVMe-IP

 (LBASIZEL_REG)

BA+0x0108 Total disk size (High) Reg [15:0]: Mapped to LBASize[47:32] of NVMe-IP

[31]: Mapped to LBAMode of NVMe-IP (LBASIZEH_REG)

BA+0x010C User Error Type Reg [31:0]: Mapped to UserErrorType[31:0] of NVMe-IP to show error status

(USRERRTYPE_REG)

BA+0x0110 PCIe Status Reg [0]: PCIe linkup status from PCIe hard IP (‘0’: No linkup, ’1’: linkup)

[3:2]: PCIe link speed from PCIe hard IP. MSB is bit[16].

(000b: Not linkup, 001b: PCIe Gen1, 010b: PCIe Gen2,

 011b: PCIe Gen3, 111b: PCIe Gen4)

[7:4]: PCIe link width status from PCIe hard IP

(0001b: 1-lane, 0010b: 2-lane, 0100b: 4-lane, 1000b: 8-lane)

[13:8]: Current LTSSM State of PCIe hard IP.

Please see more details of LTSSM value in PCIe hard IP datasheet

[16]: The upper-bit to show PCIe link speed of PCIe hard IP.

Two lower bits are bit[3:2].

(PCIESTS_REG)

BA+0x0114 Completion Status Reg [15:0]: Mapped to AdmCompStatus[15:0] of NVMe-IP

[31:16]: Mapped to IOCompStatus[15:0] of NVMe-IP (COMPSTS_REG)

BA+0x0118 NVMe CAP Reg [31:0]: Mapped to NVMeCAPReg[31:0] of NVMe-IP

(NVMCAP_REG)

BA+0x011C NVMe IP Test pin Reg [31:0]: Mapped to TestPin[31:0] of NVMe-IP

(NVMTESTPIN_REG)

BA+0x0130-

BA+0x013F

Expected value Word0-3 Reg 128-bit of the expected data at the 1st failure data in TestGen when

operating Read command

0x0130: Bit[31:0], 0x0134: Bit[63:32], …, 0x013C: Bit[127:96]

(EXPPATW0-W3_REG)

BA+0x0140-

BA+0x014F

Read value Word0-3 Reg 128-bit of the read data at the 1st failure data in TestGen when operating

Read command

0x0140: Bit[31:0], 0x0144: Bit[63:32], …, 0x014C: Bit[127:96]

(RDPATW0-W3_REG)

BA+0x0150 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure data in TestGen when

operating Read command (RDFAILNOL_REG)

BA+0x0154 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure data in TestGen

when operating Read command (RDFAILNOH_REG)

BA+0x0158 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen module

(CURTESTSIZEL_REG)

BA+0x015C Current test byte (High) Reg [24:0]: Bit[56:32] of the current test data size of TestGen module

(CURTESTSIZEH_REG)

BA+0x0160 DDR Write Address Reg [31:0]: Current DDR write address in byte unit

(bit[8:0] is fixed to 0 to align 512-byte unit) (DDRWRADDR_REG)

BA+0x0164 DDR Read Address Reg [31:0]: Current DDR read address in byte unit

(bit[8:0] is fixed to 0 to align 512-byte unit) (DDRRAADDR_REG)

BA+0x016C DDR Maximum Size Usage [31:0]: The maximum DDR size that is used in Write command. It is

calculated by finding the maximum value of (DDRWRADDR_REG –

DDRRDADDR_REG). Similar to DDRWR/RDADDR_REG, bit[8:0] is

always equal to 0 to align 512-byte unit

(DDRMAXUSED_REG)

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 22

Address Register Name Description

Rd/Wr (Label in “nvmeddrterst.c”)

Other interfaces (Custom command of NVMe-IP, IdenRAM, and Custom RAM)

BA+0x0200-

BA+0x023F

Custom Submission Queue Reg [31:0]: Submission queue entry of SMART and Flush command.

Input to be CtmSubmDW0-DW15 of NVMe-IP.

0x200: DW0, 0x204: DW1, …, 0x23C: DW15 Wr (CTMSUBMQ_REG)

BA+0x0300-

BA+0x030F

Custom Completion Queue Reg [31:0]: CtmCompDW0-DW3 output from NVMe-IP.

0x300: DW0, 0x304: DW1, …, 0x30C: DW3

Rd (CTMCOMPQ_REG)

BA+0x0800 IP Version Reg [31:0]: Mapped to IPVersion[31:0] of NVMe-IP

Rd (IPVERSION_REG)

BA+0x2000-

BA+0x2FFF

Identify Controller Data 4Kbyte Identify Controller Data Structure

Rd (IDENCTRL_REG)

BA+0x3000-

BA+0x3FFF

Identify Namespace Data 4Kbyte Identify Namespace Data Structure

Rd (IDENNAME_REG)

BA+0x4000-

BA+0x5FFF

Custom command Ram Connect to 8K byte CtmRAM interface.

Used to store 512-byte data output from SMART Command.

Wr/Rd (CTMRAM_REG)

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 23

3 CPU Firmware

3.1 Test firmware (nvmeddrtest.c)

After system boot-up, CPU runs following steps to finish the initialization process.
1) CPU initializes its peripherals such as UART and Timer.
2) CPU waits until PCIe connection links up (PCIESTS_REG[0]=’1’).
3) CPU waits until NVMe-IP completes initialization process (USRSTS_REG[0]=’0’). If some

errors are found, the process stops with displaying the error message.
4) CPU displays PCIe link status (the number of PCIe lanes and the PCIe speed) by reading

PCIESTS_REG[16:2].
5) CPU displays the main menu. There are six menus for running six commands of NVMe-IP,

i.e., Identify, Write, Read, SMART, Flush, and Shutdown.
More details of the sequence in each command in CPU firmware are described as follows.

3.1.1 Identify command

The sequence of the firmware when user selects Identify command is below.
1) Set USRCMD_REG[2:0]=000b to send Identify command request to NVMe-IP. After that,

busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. After that, the data from
Identify command of NVMe-IP is stored in IdenRAM.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE_REG[31:0]. Finally,
the process is stopped.

3) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU displays some information
decoded from IdenRAM (IDENCTRL_REG) such as SSD model name and the information
from NVMe-IP such as SSD capacity (LBASIZEL/H_REG).

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 24

3.1.2 Write/Read command

The sequence of the firmware when user selects Write/Read command is below.
1) Receive start address, transfer length, test pattern, sustain rate, DDR threshold value

(DDR threshold is the parameter for Read command only), and DDR size from Serial
console. If some inputs are invalid, the operation is cancelled.
Note: If LBA unit size = 4 Kbyte, start address, and transfer length must be aligned to 8.

2) Get all inputs and set the value to USRADRL/H_REG, USRLENL/H_REG, PATTSEL_REG,
TRNRATIO_REG, DDRRDTHR_REG, and DDRBUFFSET_REG.

3) Set USRCMD_REG[2:0]=010b for Write command or 011b for Read command and then
the command request is asserted. After that, busy flag (USRSTS_REG[0]) changes from
‘0’ to ‘1’.

4) CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring USRSTS_REG[8:0].

Bit[0] and bit[8:5] are de-asserted to ‘0’ when command is completed.
Bit[1] is asserted when some errors are detected. The error message is displayed on the
console to show the error details (decoded from USRERRTYPE_REG[31:0]) and then the
process is stopped.
Bit[2] is asserted when data verification is failed. The verification error message is
displayed on the console to show the error details. In this condition, CPU is still run until the
operation is done or user presses any key(s) to cancel operation.
Bit[3] is asserted to ‘1’ when buffer is overflow in Write command. After that, error message
is displayed on the console and waits for 2 seconds to check USRSTS_REG[1] to confirm
that overflow is not caused by NVMe error.
Bit[4] is asserted to ‘1’ when buffer is underflow in Read command. After that, error
message is displayed on the console and waits for 2 seconds to check USRSTS_REG[1]
to confirm that underflow is not caused by NVMe error.
Bit[8:5] is de-asserted to ‘0’ when all submodules are completed.

While the command is running, current transfer size read from CURTESTSIZEL/H_REG is
displayed every second.

5) After system busy flags (USRSTS_REG[0] and USRSTS_REG[8:5]) are all de-asserted to

‘0’, CPU calculates and displays the test result on the console, i.e., total time usage, total
transfer size, and transfer speed. For the Write command, maximum buffer usage is also
displayed before returning to the main menu.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 25

3.1.3 SMART Command

The sequence of the firmware when user selects SMART command is below.
1) Set 16 Dwords of Submission queue entry (CTMSUBMQ_REG) to be SMART command

value.
2) Set USRCMD_REG[2:0]=100b to send SMART command request to NVMe-IP. After that,

busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
3) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, the data returned from
SMART command is stored in CtmRAM.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE_REG[31:0]. Finally,
the process is stopped.

4) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU decodes SMART command
information from CtmRAM (CTMRAM_REG), i.e., Remaining Life, Percentage Used,
Temperature, Total Data Read, Total Data Written, Power On Cycles, Power On Hours,
and Number of Unsafe Shutdown.

More details of SMART log are described in NVM Express Specification.
https://nvmexpress.org/resources/specifications/

3.1.4 Flush Command

The sequence of the firmware when user selects Flush command is below.
1) Set 16 Dwords of Submission queue entry (CTMSUBMQ_REG) to be Flush command

value.
2) Set USRCMD_REG[2:0]=110b to send Flush command request to NVMe-IP. After that,

busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
3) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, CPU returns to the main
menu.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE_REG[31:0]. Finally,
the process is stopped.

https://nvmexpress.org/resources/specifications/

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 26

3.1.5 Shutdown Command

The sequence of the firmware when user selects Shutdown command is below.
1) Set USRCMD_REG[2:0]=001b to send Shutdown command request to NVMe-IP. After

that, busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, the CPU goes to the
next step.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE_REG[31:0]. Finally,
the process is stopped.

3) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, the SSD and NVMe-IP change to
inactive status. The CPU cannot receive the new command from user. The user must
power off the test system.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 27

3.2 Function list in Test firmware

int exec_ctm(unsigned int user_cmd)

Parameters user_cmd: 4-SMART command, 6-Flush command

Return value 0: No error, -1: Some errors are found in the NVMe-IP

Description Run SMART command or Flush command, following in topic 3.1.3
(SMART Command) and 3.1.4 (Flush Command).

Unsigned long long get_cursize(void)

Parameters None

Return value Read value of CURTESTSIZEH/L_REG

Description Read CURTESTSIZEH/L_REG and return read value as function result.

Int get_param(userin_struct* userin, unsigned int user_cmd)

Parameters userin: Parameters from user, i.e., start address, total length in 512-byte
unit, test pattern, sustain rate, DDR threshold (when running Read
command), and buffer size.
user_cmd: 2-Write command, 3-Read command

Return value 0: Valid input, -1: Invalid input

Description Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

Void iden_dev(void)

Parameters None
Return value None

Description Run Identify command, following in topic 3.1.1 (Identify command).

Int setctm_flush(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the NVMe-IP

Description Set Flush command to CTMSUBMQ_REG and call exec_ctm function to
operate Flush command.

int setctm_smart(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the NVMe-IP

Description Set SMART command to CTMSUBMQ_REG and call exec_ctm function
to operate SMART command. Finally, decode and display SMART
information on the console

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 28

void show_error(void)

Parameters None

Return value None

Description Read USRERRTYPE_REG, decode the error flag, and display error
message following the error flag.

Void show_pciestat(void)

Parameters None

Return value None

Description Read PCIESTS_REG until the read value from two read times is stable.
After that, display the read value on the console.

Void show_result(void)

Parameters None

Return value None

Description Print total size by calling get_cursize and show_size function. After that,
calculate total time usage from global parameters (timer_val and
timer_upper_val) and then display in usec, msec, or sec unit. Finally,
transfer performance is calculated and displayed in MB/s unit.

Void show_size(unsigned long long size_input)

Parameters size_input: transfer size to display on the console

Return value None

Description Calculate and display the input value in Mbyte, Gbyte, or Tbyte unit

void show_smart_hex(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as hexadecimal unit.

Void show_smart_raw(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as decimal unit when the input value is less than 4
MB. Otherwise, display overflow message.

Void show_smart_unit(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as GB or TB unit. When the input value is more
than limit (500 PB), the overflow message is displayed instead.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 29

Void show_vererr(void)

Parameters None

Return value None

Description Read RDFAILNOL/H_REG (error byte address), EXPPATW0-W3_REG
(expected value), and RDPATW0-W3_REG (read value) to display
verification error details on the console.

Void shutdown_dev(void)

Parameters None
Return value None

Description Run Shutdown command, following in topic 3.1.5 (Shutdown Command)

int wrrd_dev(unsigned int user_cmd)

Parameters user_cmd: 2-Write command, 3-Read command
Return value 0: No error, -1: Receive invalid input or some errors are found.

Description Run Write command or Read command, following in topic 3.1.2
(Write/Read command)

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 30

4 Example Test Result

The example test result when running demo system by using 512 GB Samsung 970 Pro is shown
in Figure 4-1.

Figure 4-1 Test Performance of NVMe-IP with DDR demo by using Samsung 970 Pro SSD

When running NVMe-IP with DDR demo on KCU105 board, write sustain performance is about
2,285 Mbyte/sec while read sustain performance is about 3,272 Mbyte/sec.

dg_nvmeddr_refdesign_en.doc

27-Jul-22 Page 31

5 Revision History

Revision Date Description

1.3 27-Jul-22 Add buffer size setting

1.2 2-Jul-21 Update DdrCtrl details

1.1 30-Mar-21 Add SMART, Flush, and Shutdown command

1.0 20-Apr-18 Initial version release

Copyright: 2018 Design Gateway Co,Ltd.

