
dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 1

NVMe-IP for PLDA PCIe reference design manual
Rev1.1 9-Oct-18

1 NVMe

NVM Express (NVMe) defines interface for the host controller to access solid state drives (SSD)
through PCI Express. NVM Express optimizes the process to issue command and completion by
using only 2 register writes (one for command and another for completion). Also, NVMe supports
parallel operation by supporting up to 64K commands within single queue. So, performance for
sequential and random access is improved.

In PCIe SSD market, two standards are found, i.e. AHCI and NVMe. AHCI is the older standard to
interface with SATA hard disk drives while NVMe is designed for non volatile memory like SSD.
The comparison between AHCI and NVMe protocol in more details can be found from “A
Comparison of NVMe and AHCI” document.
https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf

The example of NVMe storage devices is shown in http://www.nvmexpress.org/products/.

Generally, user needs to install NVMe driver to access NVMe SSD as shown in Figure 1-1.
Physical connector of NVMe SSD is PCIe type such as M.2 connector. NVMe-IP implements
NVMe driver and the task running on CPU by pure-hardware logic. So, CPU is not required to
access NVMe SSD when using NVMe-IP in FPGA board.

PCIe Phy

PCIe Link

PCIe Transport

NVMe Driver

CPU

XpressRICH3

Transceiver

NVMe-IP

PC system FPGA

NVMe SSDNVMe SSD

Figure 1-1 NVMe protocol layer

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 2

2 Hardware overview

dgIF typeS (CMD)

U2IPFIFO

(512x256)

IP2UFIFO

(512x256)

TestPatt

Generator

Data

Verification

256-bit TxData

256-bit RxData

TestGen

NVMe-IP

for PLDA

PCIe

XpressRICH3

NVMe-IP Test

CPU

Serial

dgIF typeS (DATA)

IdenRAM Iden I/F

NVMe SSD

Tx/Rx Trn I/F

LAXI2REGAXI4-Lite

CpuClk

(100 MHz)

UserClk

(200 MHz)

PCIeClk

(250 MHz)

UserClk

(200 MHz)

Figure 2-1 NVMe-IP demo hardware

The hardware system can be split into three groups following the interface.

1) TestGen: The example of user logic to write and read data in this reference design is
TestGen module. TestGen module generates test data to U2IPFIFO at the highest speed
with flow control in Write command. For Read command, TestGen reads and verifies test
data from IP2UFIFO at the highest speed with flow control. TestGen uses 256-bit data bus
and runs in UserClk domain which is equal to 200 MHz. Maximum bandwidth of TestGen is
more than maximum performance of Gen3 SSD.

2) NVMe: NVMe-IP connecting with XpressRICH3 is used to interface with NVMe SSD.
Command and data interface of NVMe-IP is dgIF typeS format. Command interface is
controlled by CPU while data interface is connected to FIFO. IdenRAM (implemented by
simple dual port RAM) is used to connect with Identify interface of NVMe-IP and CPU.

3) CPU: Test operation in the demo is controlled by user through Serial console. CPU
firmware is designed to receive command and command parameters from user. Then,
parameters are set to the hardware through AXI4-Lite bus. LAxi2Reg has the register sets
of test parameters which are mapped to different address of CPU. LAxi2Reg decodes the
address of AXI4-Lite bus to select the active parameter. For write access, Write data from
AXI4-Lite bus is set to the selected parameter following the address. For read access,
Read data from selected parameter is returned to AXI4-Lite bus. Read access is applied
for CPU monitoring and displaying the hardware status to the user through Serial console.

More details of the hardware are described as follows.

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 3

2.1 TestGen

This module is designed to generate Test pattern to WrFf in Write command or reads data
from RdFf to verify in Read command at the fastest speed to check system performance. The
details of hardware inside TestGen are shown in Figure 2-2.

Figure 2-2 TestGen hardware

Figure 2-3 Timing diagram of Write operation in TestGen

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 4

To start Write operation, rWrTrans is asserted to ‘1’ when WrPattStart from LAxi2Reg is
asserted to ‘1’. If rWrTrans=’1’ (Write command is operating) and WrFfAFull=’0’ (WrFf is ready
to receive new data), rWrFfWrEn[0] will be asserted to ‘1’ to send test data to WrFf. If
WrFfAFull=’1’, rWrFfWrEn[0] will be de-asserted to ‘0’ to pause data transferring. rDataCnt is
data counter to check total transfer size, increased by rWrFfWrEn[0]. When total data are
transferred complete (rDataCnt=EndSize), rWrTrans and rWrFfWrEn[0] are de-asserted to ‘0’
to stop data transferring.

For Read operation, RdFfRdEn signal is designed by using NOT logic to RdFfEmpty.
rDataCnt is increased when RdFfRdEn is asserted to ‘1’.

Block no.1 in lower side of Figure 2-2 shows the logic for generating test pattern in TestGen
module. To create unique test data for each 512-byte data, test pattern is designed as shown
in Figure 2-4.

Figure 2-4 Test pattern format in each 512-byte unit

Test pattern consists of two parts, i.e. 64-bit header in Dword#0 and Dword#1 of each
512-byte and test data in Dword#2 – Dword#127. 64-bit header is created by using address
value in 512-byte unit. As shown in Figure 2-2, TrnAddr is loaded to be initial value of rTrnAddr.
rTrnAddr is applied to be 64-bit header of each 512-byte data and increased every 512-byte
transferring. rDataCnt and write/read enable signal are monitored to check end of 512-byte
transferring.

TestGen supports to generate five patterns, i.e. 32-bit increment, 32-bit decrement, all 0, all 1,
and 32-bit LFSR. 32-bit increment is generated by using lower-bit of rTrnAddr and rDataCnt.
Decrement pattern is designed by using NOT logic of increment data. The equation of 32-bit
LFSR is x^31 + x^21 + x + 1. To create 256-bit LFSR pattern, two sets of 32-bit LFSR are
designed as shown in Figure 2-5.

The 1st DW data of set#1 uses 16 lower bit of Addr512B (address in 512-byte unit) and 16
higher bit of NAddr512B (not logic of Addr512B) to be initial value for generating test pattern.
Otherwise, the 1st DW data of set#2 uses 16 lower bit of NAddr512B and 16 higher bit of
Addr512B.

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 5

Figure 2-5 LFSR pattern in TestGen

Each LFSR logic set is designed to generate 128-bit LFSR data, so four 32-bit LFSR data
must be generated within one clock. The logic to design LFSR must use look-ahead style to
generate PattD0/D2/D4/D6 or PattD1/D3/D5/D7 in the same clock.

3-bit PattSel signal is used to select one of five test patterns. Header Inserter logic inserts
64-bit header to be the 1st and 2nd data of each 512 byte. After that, test data from pattern
counter is used to be rWrFfWrData. In Read command, rWrFfWrData is used to be expected
value to compare with read data from FIFO (RdFfRdData). PattFail is asserted to ‘1’ when
data verification is failed.

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 6

2.2 NVMe

User interface of NVMe-IP is designed by using dgIF typeS format. CMD interface is
connected to LAxi2Reg to receive the parameter from user through Serial console. 256-bit
data bus is connected with U2IPFIFO and IP2UFIFO. NVMe-IP connects to XpressRICH3 for
creating PCIe packet and converting to PCIe signals. SSD is directly connected to
XpressRICH3.

Xpress

RICH3

CMD interface

(dgIF typeS)

dgIF typeS (Data)

LAxi2Reg

256

256

U2IPFIFO

(Write)

IP2UFIFO

(Read)

NVMe-IP

for PLDA

PCIe

256-bit data

IdenRAM

Iden I/F

Figure 2-6 NVMe hardware

To support Identify command, one additional RAM is connected in the system. IdenRAM is
simple dual-port RAM which is used to store 8K byte data output from Identify command.
IdenRAM is read by CPU through LAxi2Reg.

2.2.1 NVMe-IP for PLDA PCIe

NVMe-IP for PLDA PCIe implements NVMe protocol of Host side to access NVMe SSD. User
interface is simple designed by using dgIF typeS format. NVMe-IP is designed to connect with
XpressRICH3. More details of NVMe-IP are described in datasheet.
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_pldapcie_data_sheet_en.pdf

2.2.2 XpressRICH3 for Xilinx

This block is PCIe soft IP core from PLDA. More details are described in following website.
https://www.plda.com/node/403

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 7

2.3 CPU and Peripherals

The hardware is connected to CPU through AXI4-Lite bus, similar to other CPU peripherals.
The hardware registers are mapped to CPU memory address, as shown in Table 2-1.
LAxi2Reg is the module to interface with CPU following memory map.

LAxi2Reg connects to many hardwares in the system such as TestGen, NVMe-IP, and
IdenRAM to interface control and status signals of each module. As shown in Figure 2-7,
there are two clock domains applied in this block, i.e. CpuClk (CPU Clock and AXI4-Lite bus)
and UserClk (User clock domain for TestGen and NVMe block).

AsyncAxiReg includes asynchronous circuit between CpuClk and UserClk. More details of
each hardware are described as follows.

Figure 2-7 CPU and peripherals hardware

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 8

2.3.1 AsyncAxiReg

This module is designed to convert the signal interface of AXI4-Lite to be register interface.
Also, it transfers signals in CpuClk domain to be UserClk domain. Timing diagram of register
interface is shown in Figure 2-8.

To write register, timing diagram is same as RAM interface. RegWrEn is asserted to ‘1’ with
the valid signal of RegAddr (Register address in 32-bit unit), RegWrData (write data of the
register), and RegWrByteEn (the byte enable of this access: bit[0] is write enable for
RegWrData[7:0], bit[1] is used for RegWrData[15:8], …, and bit[3] is used for
RegWrData[31:24]).

To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr (the
register address is used for 32-bit data). After that, the read data is valid on RegRdData bus
with asserting RegRdValid to ‘1’.

Figure 2-8 Register interface timing diagram

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 9

2.3.2 UserReg

As shown in Figure 2-7, after RegWrEn or RegRdReq is asserted to ‘1’ to request write or
read register, RegAddr is loaded to Address decoder to select the active register. For write
register, RegWrData signal is loaded to be the new value of active register. In this module,
RegWrByteEn is not used, so CPU firmware needs to access the hardware register by using
32-bit pointer only.

For read request, CPU monitors status signals of many modules such as TestGen, NVMe-IP,
and IdenRAM. To avoid timing constraint problem, many status signals are selected by using
multiplexer with two-stage pipeline registers. So, RegRdValid is asserted to ‘1’ after
RegRdReq is asserted for two clock cycles. Two latency clock cycles is designed by adding
two D Flip-flops to generate RegRdValid from RegRdReq.

Memory map of control and status signals inside UserReg module is shown in Table 2-1.

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 10

Table 2-1 Register Map

Address Register Name Description

Rd/Wr (Label in the “nvmexr1iptest.c”)

BA+0x0000 User Address (Low) Reg [31:0]: Input to be start address as 512-byte unit

(UserAddr[31:0] of dgIF typeS) Wr (USRADRL_REG)

BA+0x0004 User Address (High) Reg [15:0]: Input to be start address as 512-byte unit

(UserAddr[47:32] of dgIF typeS) Wr (USRADRH_REG)

BA+0x0008 User Length (Low) Reg [31:0]: Input to be transfer length as 512-byte unit

(UserLen[31:0] of dgIF typeS) Wr (USRLENL_REG)

BA+0x000C User Length (High) Reg [15:0]: Input to be transfer length as 512-byte unit

(UserLen[47:32] of dgIF typeS) Wr (USRLENH_REG)

BA+0x0010 User Command Reg [1:0]: Input to be user command (UserCmd of dgIF typeS for NVMe-IP)

“00”: Identify, “10”: Write SSD, “11”: Read SSD

When this register is written, the design generates command request to

NVMe-IP to start new command operation.

Wr (USRCMD_REG)

BA+0x0014 Test Pattern Reg [2:0]: Test pattern select

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR Wr (PATTSEL_REG)

BA+0x0100 User Status Reg [0]: UserBusy of dgIF TypeS (‘0’: Idle, ‘1’: Busy)

[1]: UserError of dgIF TypeS (‘0’: Normal, ‘1’: Error)

[2]: Data verification fail (‘0’: Normal, ‘1’: Error)

[4:3]: PCIe speed from IP

(“00”: No linkup, “01”: PCIe Gen1, “10”: PCIe Gen2, “11”: PCIe Gen3)

Rd (USRSTS_REG)

BA+0x0104 Total disk size (Low) Reg [31:0]: Total capacity of SSD in 512-byte unit

(LBASize[31:0] of dgIF typeS) Rd (LBASIZEL_REG)

BA+0x0108 Total disk size (High) Reg [15:0]: Total capacity of SSD in 512-byte unit

(LBASize[47:32] of dgIF typeS) Rd (LBASIZEH_REG)

BA+0x010C User Error Type Reg [31:0]: User error status

(UserErrorType[31:0] of dgIF typeS) Rd (USRERRTYPE_REG)

BA+0x0114 Completion Status Reg [15:0]: Status from Admin completion (AdmCompStatus[15:0] of NVMe-IP)

[31:16]: Status from I/O completion (IOCompStatus[15:0] of NVMe-IP) Rd (COMPSTS_REG)

BA+0x0118 NVMe CAP Reg [31:0]: NVMeCAPReg[31:0] output from NVMe-IP

Rd (NVMCAP_REG)

BA+0x011C NVMe IP Test pin Reg [31:0]: TestPin[31:0] output from NVMe-IP

Rd (NVMTESTPIN_REG)

BA+0x0120 Data Failure Address (Low) Reg [31:0]: Latch value of failure address[31:0] in byte unit from read command

Rd (RDFAILNOL_REG)

BA+0x0124 Data Failure Address (High) Reg [24:0]: Latch value of failure address [56:32] in byte unit from read command

Rd (RDFAILNOH_REG)

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 11

Address Register Name Description

Rd/Wr (Label in the “nvmeiptest.c”)

BA+0x0140 Expected value Word0 Reg [31:0]: Latch value of expected data [31:0] from read command

Rd (EXPPATW0_REG)

BA+0x0144 Expected value Word1 Reg [31:0]: Latch value of expected data [63:32] from read command

Rd (EXPPATW1_REG)

BA+0x0148 Expected value Word2 Reg [31:0]: Latch value of expected data [95:64] from read command

Rd (EXPPATW2_REG)

BA+0x014C Expected value Word3 Reg [31:0]: Latch value of expected data [127:96] from read command

Rd (EXPPATW3_REG)

BA+0x0150 Expected value Word4 Reg [31:0]: Latch value of expected data [159:128] from read command

Rd (EXPPATW4_REG)

BA+0x0154 Expected value Word5 Reg [31:0]: Latch value of expected data [191:160] from read command

Rd (EXPPATW5_REG)

BA+0x0158 Expected value Word6 Reg [31:0]: Latch value of expected data [223:192] from read command

Rd (EXPPATW6_REG)

BA+0x015C Expected value Word7 Reg [31:0]: Latch value of expected data [255:224] from read command

Rd (EXPPATW7_REG)

BA+0x0180 Read value Word0 Reg [31:0]: Latch value of read data [31:0] from read command

Rd (RDPATW0_REG)

BA+0x0184 Read value Word1 Reg [31:0]: Latch value of read data [63:32] from read command

Rd (RDPATW1_REG)

BA+0x0188 Read value Word2 Reg [31:0]: Latch value of read data [95:64] from read command

Rd (RDPATW2_REG)

BA+0x018C Read value Word3 Reg [31:0]: Latch value of read data [127:96] from read command

Rd (RDPATW3_REG)

BA+0x0190 Read value Word4 Reg [31:0]: Latch value of read data [159:128] from read command

Rd (RDPATW4_REG)

BA+0x0194 Read value Word5 Reg [31:0]: Latch value of read data [191:160] from read command

Rd (RDPATW5_REG)

BA+0x0198 Read value Word6 Reg [31:0]: Latch value of read data [223:192] from read command

Rd (RDPATW6_REG)

BA+0x019C Read value Word7 Reg [31:0]: Latch value of read data [255:224] from read command

Rd (RDPATW7_REG)

BA+0x01C0 Current test byte (Low) Reg [31:0]: Current test data size of TestGen module in byte unit (bit[31:0])

Rd (CURTESTSIZEL_REG)

BA+0x01C4 Current test byte (High) Reg [24:0]: Current test data size of TestGen module in byte unit (bit[56:32])

Rd (CURTESTSIZEH_REG)

BA+0x2000

– 0x2FFF

Identify Controller Data

(IDENCTRL_REG)

4Kbyte Identify Controller Data Structure

BA+0x3000

– 0x3FFF

Identify Namespace Data

(IDENNAME_REG)

4Kbyte Identify Namespace Data Structure

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 12

3 CPU Firmware

After system boot-up, CPU initializes its peripherals such as UART and Timer. Next, CPU waits
until PCIe connection links up (PCISTS_REG[0]=’1’). Finally, CPU waits until NVMe-IP completes
initialization process (USRSTS_REG[0]=’0’).

To receive command from user, Main menu is displayed on the console for user selecting one of
six commands (Identify, Write, or Read). More details of the sequence in each command are
described as follows.

3.1 Identify Command

The sequence of the firmware when user selects Identify command is below.
1) Set USRCMD_REG=”00”. Next, Test logic generates command and request to NVMe-IP.

After that, Busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG value. Bit[0] is de-asserted to ‘0’ when command is completed. Bit[1] is
asserted to ‘1’ when some errors are detected. In case of error condition, there is error
message displayed on the console. If the command is completed, the data from Identify
command of NVMe-IP will be stored in IdenRAM.

3) CPU reads Identify data from IdenRAM (IDENCTRL_REG) and displays SSD model name.
Otherwise, SSD capacity and LBA unit size are also displayed by reading from NVMe-IP
output (LBASIZEL_REG and LBASIZEH_REG).

3.2 Write/Read Command

The sequence of the firmware when user selects Write/Read command is below.
1) Receive start address, transfer length, and test pattern through Serial console. If some

inputs are invalid, the operation will be cancelled.
2) Get all inputs and set the value to USRADRL/H_REG, USRLENL/H_REG, PATTSEL_REG,

and USRCMD_REG (USRCMD_REG=”10” for Write command, and “11” for Read
command).

3) CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring USRSTS_REG[2:0]. If USRSTS_REG[2] (verification error) is
asserted to ‘1’, verification error message will be displayed. After that, CPU still runs until
end of operation or user inputs any key to cancel operation.

4) During running command, current transfer size reading from CURTESTSIZE_REG is
displayed every second. Finally, test performance is displayed on Serial console when
command is completed.

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 13

4 Example Test Result

The example test result when running demo system by using 512 GB Samsung 960 Pro is shown
in Figure 4-1.

Figure 4-1 Test Performance of NVMe IP demo by using Samsung 960 Pro SSD

By using PCIe Gen3 on ZCU102 board, write performance is about 2100 Mbyte/sec and read
performance is about 3200 Mbyte/sec.

dg_nvmeip_pldapcie_refdesign_en.doc

2018/10/09 Page 14

5 Revision History

Revision Date Description

1.0 5-Feb-18 Initial Release
1.1 9-Oct-18 Add more information

Copyright: 2018 Design Gateway Co,Ltd.

