

SATA-IP Introduction (Xilinx)

Ver2.5E

7 October 2019 Design Gateway Page 1

Agenda

- SATA Overview
 - Summary, Features and Trend
 - Merit and Solution
- SATA-IP Introduction
 - Summary
 - Application

What is SATA?

- Standard storage interface of HDD/SSD
 - SATA1.0 released in year 2000, the latest standard is SATA3.0.
- Improved from IDE (Parallel-ATA)
 - Cable (from 80 line 46cm to flat narrow cable 1m)
 - High-speed (PATA: Max.133MB/s -> SATA: Max.600MByte/s)
 - Jumper setting is not required anymore.

7 October 2019 Design Gateway Page 3

Features of SATA device

- Popular
 - Compatibility. Easy to replace.
 - Commodity. Easy to buy.
- Low price
 - 2.5"SSD 480GB is 50USD
 - 3.5"HDD 4TB is 80USD

(06-Jan-2019 Amazon.com)

Trend of SATA device

- SATA storage is switching to SSD from HDD.
- SSD has advantage compared with HDD in toughness & silence.
- HDD has advantage compared with SSD in capacity and price.

	HDD	SDD
Life Expectancy	क्रे के क्रे	ये ये ये ये ये
Operating Temperature	भे भे भे	क्रे क्रे क्रे क्रे क्रे
Storage Temperature	संसंधं	***
Operating Shock	\$	***
Operating Vibration	計	***
Humidity	क्रे के के के	***
Altitude	***	***
Acoustic Noise	क्रे के के	क्रे के के के के
Raw Media Error Rate	***	ये ये ये ये
Apps Data Error Rate	के के के के	* * * *
Performance-Sequential	***	ये ये ये ये
Performance - Random	क्रे क्रे	* * * *
PowerIdle	***	ये ये ये ये
Power Read/Write	क्रे क्रे	* * * *
Capacity	***	***
Cost/IOPS	* * *	* * *
Cost/MBps	***	ये ये ये
Cost/GB	के के के के के	ये ये ये

7 October 2019 Design Gateway Page 5

Merit of SATA adoption

- Huge non-volatile storage
 - GigaByte/TeraByte capacity.
- High-speed and Low cost
 - Several Megabyte per second Read/Write speed
 - Mass produced goods
- Compatibility
 - Easy and quick to repair and recover, just replace.
 - Your product lineup will be various with different capacity storages

Just change storage capacity to arrange various products from high-end model to low cost model.

Solution for embedded system

- 1: Use Existing SATA chip (ASSP)
 - Merit: Device cost
 - Demerit: Limitation of MOQ, support and fixed function
- 2: Use FPGA+SATA-IP core
 - Merit: Flexibility, support special usage such as RAID, MOQ etc..
 - Demerit: Device cost (In case of SATA function only)

Conclusion:

If the system is simple function and the availability is acceptable, ASSP may be better for you.

For other case, FPGA + SATA-IP core is best solution for you!!

7 October 2019 Design Gateway Page 7

What is SATA-IP?

- Implement SATA channel by MGT resource.
- IP-Core includes Link layer (and some part of Transport layer).
- Reference Design available for PHY layer and Transport layer.

Product Lineup

Prod. No.	Device	Speed	Available reference design
SATA-IP-ZUP	Zynq-UltraScale+	SATA-III	4chRAIDwithHCTL-IP, HCTL-IP
SATA-IP-VUP	Virtex-UltraScale+	SATA-III	4chRAIDwithHCTL-IP, HCTL-IP
SATA-IP-KU	Kintex-UltraScale	SATA-III	4chRAID, Host, HCTL-IP, 8chRAIDwithHCTL-IP
SATA-IP-VT7	Virtex-7	SATA-III	8ch/4chRAID, Host, HCTL-IP
SATA-IP-ZQ7	Zynq-7000	SATA-III	4chRAID, Host, Device, Linux(AHCI), exFAT, FAT32
SATA-IP-KT7	Kintex-7	SATA-III	4chRAID, Host, Device, HCTL-IP, Duplicator, FAT32
SATA-IP-AT7	Artix-7	SATA-III	Host, Device, HCTL-IP, Bridge

All device from 7-series or later can support SATA3.0 (6Gbps)

Many reference design available (Can check operation for evaluation)

7 October 2019 Design Gateway Page 9

Supports both of Host and Device

- Single IP-Core supports both of Host (PC side) and Device (Disk side).
 - Switch between Host function and Device function by dev_host_n signal input.

Approved IP-Core by Xilinx

http://www.xilinx.com/alliance/memberlocator/1-8dv3-6.html

7 October 2019 Design Gateway Page 11

SSD performance

- More than 200MB/s transfer speed by the latest SSD.
- Achieves SSD specification performance.
 - Best for high-speed large-capacity storage application.

- * Evaluation result by KC705
- * SATA-2 SSD: Intel SSDSA2SH032G1GN
- * SATA-3 SSD: Samsung SSD840PRO
- * 8GB sequential access performance using psudo random data pattern

Free Bit-file for Evaluation (1)

- Serial communication with PC as Host side.
- Write/Read access to/from SATA device.
- Measure transmission speed.

Example of write transfer

- •Set address, sector count and type of data pattern
- •Measure transmission speed and display the result

7 October 2019 Design Gateway Page 13

Free Bit-file for Evaluation (2)

- Free bit-file for Evaluation on Xilinx FPGA boards.
- Downloadable from SATA-IP Web page.

SATA-IP evaluation environment

Reference Design (Summary)

- EDK Project Design of Evaluation bit-file.
- Full source code (VHDL) except IP core
- Can save user system development duration
 - Confirm real board operation by original reference design.
 - Then modify a little to approach final user product
 - Check real operation in each modification step.

No risk to back to rebuild, able to develop for short term!

7 October 2019 Design Gateway Page 15

Reference Design (Structure)

Block diagram of SATA-IP reference design

Resource Usage

XP	Design total=			
Report	Flip Flops Used	LUTs Used	BRAMS Used	31150DFF & 53BRAM
<u>system</u>	31150	31277	53	0.7
system axi42sata 0 wrapper	1968	2020	17	SATA 1channel= 2000DFF & 17BRAM
system ddr3 sdram wrapper	11069	14651		2000211 0.112101111
system rs232 uart 1 wrapper	305	451		
system dual timer counter wrapper	217	311		Use about 2500DFF for SATA i
system debug module wrapper	131	140		14219DFF of AXI wrapper
system microblaze 0 wrapper	2156	2004	4	(No BRAM consumption at SAT
system Imb bram wrapper			16	
system interrupt ontlr wrapper	56	92		
system axi4lite 0 wrapper	118	249		4500DFF & 17BRAM
system axi mm mb wrapper	834	498		for 1 SATA channel
system axi4 0 wrapper	14219	10749	16	<u> </u>
system proc sys reset 0 wrapper	69	56		1% of total DFF=407,600
SATA-IP r	eference desi	gn resou	rce usage	4% of total BRAM=445 in XC7K325T
7 October 2019	Ι	Design Gatev	vay	Page 17

Development tool for RAID

- Adapter board with 10 SATA Host connectors.
- Connector for FMC-HPC of Xilinx Eval Bd.
- Direct connect to 2.5 inch SSDs or HDDs.

RAID Design Project

RAID System Performance

* SSD : Samsung SSD 840PRO (Standalone performance is Write=452MB/s and Read=555MB/s)

VC709 + 8 SSDs RAID system performance

SATA-IP Optional Product

HCTL-IP Core

- Pure hard-wired host controller core
- Automatic read/write execution without CPU
- Best performance because firmware overhead not exist

AHCI-IP Core

- SATA access possible from LinuxOS
- Support ARM Core for Zynq-7000 family

- Provide FAT32/exFAT access feature by hardwired logic
- Can record data as 'file' -> PC can access to data via file

7 October 2019 Design Gateway Page 21

HCTL-IP Core (Optional Product)

- Controller IP core designed by pure hard-wired logic
 - Full autimatic SATA-IP control instead of CPU and its firmware
 - Can build storage system without CPU
 - Can save CPU time completely in SoC application system
- Minimize overhead by high speed state machine
 - Theoretically the best performance (especially for write)
 - Write improvement example: CPU control=465MB/s -> Host-IP=525MB/s
 - Provides reference design for both 1ch and 4ch-RAID0 on Intel board

HCTL-IP Core (Cont'd)

- Common interface among all Storage IP-Core (dgIF typeS)
 - Same user interface among other IP-Core (NVMe-IP) product
 - Can keep same user logic for different storage between SATA and NVMe

- Simple user interface for easy use
 - Set R/W type, address, sector count parameter and issue request pulse
 - Very popular data interface by general FIFO

7 October 2019 Design Gateway Page 23

AHCI-IP Core (Optional Product)

- Can access to SATA channel from Linux
 - Reference design available for SoC device
 - Provide AHCI Linux driver C source code
- Supports NCQ feature
 - Queue re-order in multiple command
 - Minimum latency by using internal RAM for Queue table
 - Very high performance for random access
- Multiple port count support by customization
 - Standard product support 1 port
 - Port count can be increased by core customization

FAT32-IP/exFAT-IP Core (Optional Product)

- Supports data recording by FAT32/exFAT file format
 - In combination with both SATA-IP and HCTL-IP core
- PC can directly access to recorded data as a file
 - FPGA writes data to device, reconnect with PC, then PC can read data

PC can directly read recorded data as a file

7 October 2019 Design Gateway Page 25

FAT32-IP/exFAT-IP (Cont'd 1)

Feature description

- Executes drive format and data write to file by pure hardwired logic.
- IP core automatically generates file name.
- User logic sends file data via FIFO interface.

Limitation

- Drive must be formatted by the IP core, not by the PC.
- Files other than those generated by the IP core cannot be written to the drive.
- File size is determined at format execution and cannot be changed.

FAT32-IP/exFAT-IP (Cont'd 2)

- Reference design for real operation available
 - Executes test file generation via serial console.
 - User can confirm file read compatibility by drive re-plug to the PC.

Generate test file, reconnect with PC, and can check file read compatibility

7 October 2019 Design Gateway Page 27

SATA-IP Application (1)

Advanced High-definition Video Recorder

SATA-IP Application (2)

Security Drive System

7 October 2019 Design Gateway Page 29

SATA-IP Application (3)

- Duplicator Application Reference Design
 - Copy whole data from Master drive to multiple Slave drives
 - Reference design for KC705 board
 - Design project available for formal SATA-IP customer

SATA-IP Application (4)

- Recording and Analysis system on Linux
 - Mount Linux and user analysis application on SoC/MPSoC device
 - Very high-speed data recording to SATA drive via SATA-IP core
 - Data read from SATA drive via device driver and analyze by user application

Recording and Analysis sytem on Linux (device driver and reference design available)

7 October 2019 Design Gateway Page 31

For more detail

- Detailed documents available on the web site.
 - http://www.dgway.com/SATA-IP_X_E.html
- Contact
 - Design Gateway Co,. Ltd.
 - E-mail : sales@design-gateway.com
 - FAX: +66-2-261-2290

Revision History

Rev.	Date	History		
1.0	4-Feb-2009	English version initial release		
		Add introduction of summary of SATA		
1.3	31-Jul-2012	Update explanation of RAID development tool (AB09-FMCRAID board)		
1.4E	21-Feb-2013	Added SATA-3 by Kintex-7support		
1.7E	1-May-2013	Added exFAT reference design (SATA-IP-exFAT-X) introduction		
2.2E	27-Jul-2016	Added Kintex-UltraScale support and followed update in Japanese presentation		
2.3E	03-Apr-17	Add common user interface (dgIF typeS) and its merit description for SATA Host-IP		
2.4E	06-Jan-19	Add FAT32-IP/exFAT-IP for SATA-IP optional products		
2.5E	04-Oct-19	Add Linux application example		

7 October 2019 Design Gateway Page 33