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1 Introduction 

 
Figure 1-1 HCTL-IP hardware comparing to SATA-IP hardware 

 
In SATA-IP reference design, the application layer is designed by using firmware running on 
MicroBlaze and SATA FIS packet is stored to DDR. By using HCTL-IP, the reference design is 
simpler. Application layer of SATA protocol is implemented by HCTL-IP, so CPU and DDR do not 
need in the design. User Logic to run with HCTL-IP can be designed by simple state machine. 
Data buffer uses only FIFO to store user data instead of DDR to store FIS packet. 
 
The advantage of using MicroBlaze firmware on SATA-IP reference design is system flexibility. 
The firmware supports many SATA commands and the additional command can be supported by 
updating the firmware. But the command on HCTL-IP is fixed to four commands, i.e. Identify 
device, Security erase, Write, and Read. 
 
The advantage of using HCTL-IP is less resource utilization and higher performance. DDR and 
MicroBlaze use much logic resource to implement while HCTL-IP design uses only FIFO to be 
data buffer. For performance issue, the overhead time to process one SATA packet with SATA-IP 
by CPU firmware is more than HCTL-IP. So, test result of Write command on HCTL-IP reference 
design shows better speed than SATA-IP reference design. 
 
More details of SATA-IP reference design are described in following documents. 
http://www.dgway.com/products/IP/SATA-IP/dg_sata_ip_refdesign_host_7series_en.pdf 
http://www.dgway.com/products/IP/SATA-IP/dg_sata_ip_host_demo_instruction_7series_en.pdf 
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2 Hardware overview 
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Figure 2-1 HCTL-IP demo hardware 

 
The hardware system can be split into three groups following the interface i.e. 
 

1) TestGen: The example of user logic to write and read data in this reference design is 
TestGen module. TestGen module generates test data to U2IPFIFO at the highest speed 
with flow control in Write command. For Read command, TestGen reads and verifies test 
data from IP2UFIFO at the highest speed with flow control. TestGen uses 32-bit data bus 
and runs in UserClk domain which is equal to 200 MHz. So, maximum bandwidth is 800 
MB/s which is more than maximum performance of SATA-III devices. 

2) SATA: HCTL-IP connecting with SATA-IP and SATA PHY is designed to interface with 
SATA device. Command and data interface of HCTL-IP is dgIF typeS format. For Identify 
device data, the interface is designed to store data to RAM. 

3) CPU: Test operation in the demo is controlled by user through Serial console. CPU 
firmware is designed to receive test parameters and the command from user. CPU sets 
parameters to the hardware through AXI4-Lite bus. LAxi2Reg has the register sets of test 
parameters which are mapped to different address of CPU. LAxi2Reg decodes the 
address of AXI4-Lite bus to select the active parameter. For write access, Write data from 
AXI4-Lite bus is set to the selected parameter following the address. For read access, 
Read data from selected parameter is returned to AXI4-Lite bus. Read access is applied 
for CPU monitoring and displaying the hardware status to the user through Serial console. 

 
More details of the hardware are described as follows. 
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2.1 TestGen 

 
This module is designed to generate Test pattern to WrFf in Write command or reads data 
from RdFf to verify in Read command at the fastest speed to check system performance. The 
details of hardware inside TestGen are shown in Figure 2-2. 

 

 
Figure 2-2 TestGen hardware 

 

 
Figure 2-3 Timing diagram of Write operation in TestGen 
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To start Write operation, rWrTrans is asserted to ‘1’ when WrPattStart from LAxi2Reg is 
asserted to ‘1’ for one clock cycle. After that, rWrFfWrEn[0] is asserted to ‘1’ to send test data 
to WrFf when rWrTrans=’1’ and WrFfAFull=’0’. If WrFfAFull=’1’, rWrFfWrEn[0] will be 
de-asserted to ‘0’ to pause data transferring. rDataCnt is data counter to check total transfer 
size, increased by rWrFfWrEn[0]. When total data are transferred completely 
(rDataCnt=rEndSize), rWrTrans and rWrFfWrEn[0] are de-asserted to ‘0’ to stop data 
transferring. rEndSize is total transfer size in sector unit which is calculated by TrnLen signal. 
 
For Read operation, RdFfRdEn is designed by connecting NOT logic to RdFfEmpty. rDataCnt 
is increased when RdFfRdEn is asserted to ‘1’. In Read operation, rDataCnt is used to 
generate test pattern to verify with the received data (RdFfRdData). 

 

 
Figure 2-4 Test pattern format in each sector 

 
Block no.1 in lower side of Figure 2-2 shows the logic for generating test pattern in TestGen 
module. To create unique test data for each sector, test pattern is designed as shown in 
Figure 2-4. 
 
Test pattern consists of two parts, i.e. 64-bit header in word#0 and word#1 of each sector and 
test data in word#2 – word#127. 64-bit header is created by using LBA address value of the 
data (LBA address is the address in sector unit). As shown in Figure 2-2, TrnAddr is loaded to 
be initial value of rTrnAddr. rTrnAddr is applied to be 64-bit header of each sector and 
increased after completing to transfer one sector data. rDataCnt and write/read enable signal 
are monitored to check end of sector transferring. 
 
TestGen supports to generate five patterns, i.e. 32-bit increment, 32-bit decrement, all 0, all 1, 
and 32-bit LFSR. 32-bit increment is generated by using lower-bit of rTrnAddr and rDataCnt. 
Decrement pattern is designed by using NOT logic with increment data. 32-bit LFSR counter 
uses the 1st DW data (LBA[31:0]) to be initial value for generating test pattern in each sector. 
The equation of LFSR is x^31 + x^21 + x + 1.  
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Figure 2-5 LFSR pattern in TestGen 

 
3-bit PattSel signal are used to select one of five test patterns. Header Inserter logic inserts 
64-bit header to be the 1st and 2nd data of each sector. After that, test data from pattern 
counter is transferred to rWrFfWrData. In Read command, rWrFfWrData is used to be 
expected value to compare with read data from FIFO (RdFfRdData). PattFail is asserted to ‘1’ 
when data verification is failed. 
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2.2 SATA 

 
User interface of HCTL-IP is designed by using dgIF typeS format. CMD interface is 
connected to LAxi2Reg to receive the parameter from user through Serial console. 32-bit data 
bus is connected with U2IPFIFO and IP2UFIFO. To transfer data with SATA device, HCTL-IP 
is connected to SATA-IP and SATA PHY, as shown in Figure 2-6. 

 

 
Figure 2-6 SATA hardware 

 
2.2.1 HCTL-IP 

 
HCTL-IP implements application layer of SATA protocol to create and decode SATA FIS 
packet with SATA-IP. Four commands are supported, i.e. Identify device, Security erase, 
Write, and Read command. More details of HCTL-IP are described in datasheet. 
http://www.dgway.com/products/IP/SATA-IP/dg_sata_host_ip_data_sheet_en.pdf 

 
2.2.2 SATA-IP 

 
SATA-IP implements some parts of transport layer and link layer of SATA protocol. It includes 
two asynchronous FIFOs to support different clock domain of user interface and PHY 
interface. More details of SATA-IP are described in datasheet. 
http://www.dgway.com/products/IP/SATA-IP/dg_sata_ip_data_sheet_7series_en.pdf 

 
2.2.3 SATA PHY 

 
This module is the example HDL logic which implements state machine for controlling OOB 
(Out-of-band) sequence with SATA device. The logic includes Xilinx transceiver which is 
different in each FPGA model. More details of SATA PHY are described in SATA-IP reference 
design. 
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2.3 CPU and Peripherals 

 
The hardware is connected to CPU through AXI4-Lite bus, similar to other CPU peripherals. 
The hardware registers are mapped to CPU memory address, as shown in Table 2-1. The 
control and status registers for CPU access are designed in LAxi2Reg. 
 
LAxi2Reg connects to many hardwares in the system such as TestGen, HCTL-IP, and 
IdenRAM to get the control and status signals of each module. As shown in Figure 2-7, there 
are two clock domains applied in this block, i.e. CpuClk which is used to interface with 
AXI4-Lite bus of CPU and UserClk which is user clock domain for TestGen and HCTL-IP.  
 
AsyncAxiReg includes asynchronous circuit between CpuClk and UserClk. More details of 
each hardware are described as follows. 
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Figure 2-7 CPU and peripherals hardware 
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2.3.1 AsyncAxiReg 

 
This module is designed to convert the signal interface of AXI4-Lite to be register interface. 
Also, it supports to convert clock domain from CpuClk to be UserClk domain. Timing diagram 
of register interface is shown in Figure 2-8.  

 

 
Figure 2-8 Register interface timing diagram 

 
To write register, timing diagram is same as RAM interface. RegWrEn is asserted to ‘1’ with 
the valid signal of RegAddr (Register address in 32-bit unit), RegWrData (write data of the 
register), and RegWrByteEn (the byte enable of this access: bit[0] is write enable for 
RegWrData[7:0], bit[1] is used for RegWrData[15:8], …, and bit[3] is used for 
RegWrData[31:24]). 
 
To read register, AsyncAxiReg asserts RegRdReq=’1’ with the valid value of RegAddr (the 
register address in 32-bit unit). After that, the module waits until RegRdValid is asserted to ‘1’ 
to get the read data through RegRdData signal. During read access, RegAddr holds the same 
value until RegRdValid is asserted to ‘1’. 
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2.3.2 UserReg 

 
The details of UserReg module is shown in Figure 2-7. After RegWrEn or RegRdReq is 
asserted to ‘1’ by AsyncAxiReg to request write or read register access, RegAddr is read by 
Address decoder to select the active register. For write access, RegWrData signal is loaded 
to be the new value for the requested register. In this module, RegWrByteEn is not used, so 
CPU firmware needs to access the hardware register by using 32-bit pointer only. 
 
For read request, there are many status signals for CPU access from TestGen, HCTL-IP, and 
IdenRAM. So, data multiplexer with pipelines register are designed to select the read data to 
return to CPU following RegAddr value. RegRdValid is designed by using one D Flip-flop, 
input by RegRdReq signal. So, the read access has one clock cycle latency, measured by the 
delay time from RegRdReq to RegRdValid. 
 
Memory map of control and status signals inside UserReg module is shown in Table 2-1. 
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Table 2-1 Register Map 

 
Address Register Name  Description 

Rd/Wr (Label in the “hsataiptest.c”) 

BA+0x00 User Address (Low) Reg [31:0]: Input to be start sector address  

(UserAddr[31:0] of dgIF typeS for HCTL-IP) Wr (USRADRL_REG) 

BA+0x04 User Address (High) Reg [15:0]: Input to be start sector address  

(UserAddr[47:32] of dgIF typeS for HCTL-IP) Wr (USRADRH_REG) 

BA+0x08 User Length (Low) Reg [31:0]: Input to be transfer length in sector unit  

(UserLen[31:0] of dgIF typeS for HCTL-IP) Wr (USRLENL_REG) 

BA+0x0C User Length (High) Reg [15:0]: Input to be transfer length in sector unit  

(UserLen[47:32] of dgIF typeS for HCTL-IP) Wr (USRLENH_REG) 

BA+0x10 User Command Reg [1:0]: Input to be user command (UserCmd of dgIF typeS for HCTL-IP) 

“00”-Identify device, “01”-Security erase, “10”-Write Dev, “11”-Read Dev. 

When this register is written, the design generates command request to 

HCTL-IP to start new command operation. 

Wr (USRCMD_REG) 

BA+0x14 Test Pattern Reg [2:0]: Test pattern select 

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR Wr (PATTSEL_REG) 

BA+0x100 User Status Reg [0]: UserBusy of dgIF typeS for HCTL-IP (‘0’: Idle, ‘1’: Busy) 

[1]: UserError of dgIF typeS for HCTL-IP (‘0’: Normal, ‘1’: Error) 

[2]: Data verification fail (‘0’: Normal, ‘1’: Error) 

[4:3]: SATA speed from IP  

“00”: No linkup, “01”: SATA Gen1 (Not supported for all designs),  

“10”: SATA Gen2 (Not supported for KCU105), “11”: SATA Gen3 

Rd (USRSTS_REG) 

BA+0x104 Total disk size (Low) Reg [31:0]: Total capacity of SATA device in sector unit  

(LBASize[31:0] of dgIF typeS for HCTL-IP) Rd (LBASIZEL_REG) 

BA+0x108 Total disk size (High) Reg [15:0]: Total capacity of SATA device in sector unit  

(LBASize[47:32] of dgIF typeS for HCTL-IP) Rd (LBASIZEH_REG) 

BA+0x10C User Error Type Reg [31:0]: User error status, directly mapped from UserErrorType[31:0] of 

HCTL-IP. Rd (USRERRTYPE_REG) 

BA+0x11C SATA Host IP Test pin Reg [31:0]: TestPin[31:0] which is directly mapped from HCTL-IP 

Rd (TESTPIN_REG) 

BA+0x120 Data Failure Address (Low) Reg [31:0]: Latch value of failure address[31:0] in byte unit from read command 

Rd (RDFAILNOL_REG) 

BA+0x124 Data Failure Address (High) Reg [24:0]: Latch value of failure address [56:32] in byte unit from read 

command Rd (RDFAILNOH_REG) 

BA+0x130 Expected value Word0 Reg [31:0]: Latch value of expected data [31:0] from read command 

Rd (EXPPATW0_REG) 

BA+0x140 Read value Word0 Reg [31:0]: Latch value of read data [31:0] from read command 

Rd (RDPATW0_REG) 

BA+0x150 Current test byte (Low) Reg [31:0]: Current test data size of TestGen module in byte unit (bit[31:0]) 

Rd (CURTESTSIZEL_REG) 

BA+0x154 Current test byte (High) Reg [24:0]: Current test data size of TestGen module in byte unit (bit[56:32]) 

Rd (CURTESTSIZEH_REG) 

BA+0x2000 

– 0x21FF 

Identify Device Command Data 

(IDENCTRL_REG) 

512-byte Identify Device Data 
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3 CPU Firmware 
 
After system boot-up, CPU initializes its peripherals such as UART and Timer. Next, CPU waits 
HCTL-IP completes initialization process (USRSTS_REG[0]=’0’). After that, main menu is 
displayed. CPU firmware supports four commands following USRCMD_REG value, i.e. “00” for 
Identify device, “01” for Security erase, “10” for Write, and “11” for Read. More details of the 
sequence in each command are described as follows. 
 
3.1 Identify device command 

The sequence of the firmware when user selects Identify device command is below. 
1) Set USRCMD_REG=”00”. Next, Test logic sends Identify device command to HCTL-IP. 

HCTL-IP busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’. 
2) CPU waits until the operation is completed or some errors are found by monitoring 

USRSTS_REG value. Bit[0] is de-asserted to ‘0’ when command is completed. Bit[1] is 
asserted to ‘1’ when some errors are detected. In case of error condition, there is error 
message displayed on the console. If the command is completed, the data from Identify 
device command of SATA device will be stored in IdenRAM. 

3) CPU reads Identify device data from IdenRAM which is mapped to IDENCTRL_REG 
address. Then, CPU displays the information such as SATA device model name, security 
feature set supported, and erase time value on Serial console. Also, device capacity 
(LBASIZEL/H_REG) is displayed in GB unit on the console.  

 
3.2 Write/Read command 

The sequence of the firmware when user selects Write/Read command is below. 
1) Receive start address, transfer length, test pattern through Serial console. If some inputs 

are invalid, the operation will be cancelled. 
2) Get all inputs and set the value to USRADRL/H_REG, USRLENL/H_REG, PATTSEL_REG, 

and USRCMD_REG (USRCMD_REG=”10” for write transfer, and “11” for read transfer).  
3) CPU waits until the operation is completed or some errors (except verification error) are 

found by monitoring USRSTS_REG[2:0].  
If USRSTS_REG[2] is asserted to ‘1’, verification error message will be displayed. After 
that, CPU still runs until end of operation or user inputs any key to cancel operation. 

4) During running command, current transfer size reading from CURTESTSIZE_REG is 
displayed every second. Finally, test performance is displayed on Serial console when 
command is completed. 

 
3.3 Security erase command 

The sequence of the firmware when user selects Security erase command is below. 
1) Set USRCMD_REG=”01”. Next, test logic sends Security erase command to HCTL-IP. 

HCTL-IP busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’. 
2) CPU waits until command complete by monitoring USRSTS_REG value. Bit[0] is 

de-asserted to ‘0’ when command is completed. This operation may use long time to 
operate, so there is dummy message displayed on the console every second to show 
system alive status. Finally, total time usage is displayed on Serial console when command 
is completed. 
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4 Example Test Result 
 
The example test result when running demo system by using 256 GB Samsung 850 Pro is shown 
in Figure 4-1. 
 

520

564
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Mbyte/s  
Figure 4-1 Test Performance of HCTL-IP demo by using Samsung 850 Pro SSD 

 
By using SATA Gen3 on KCU105 board, write performance is about 520 Mbyte/sec and read 
performance is about 564 Mbyte/sec. 
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5 Revision History  
 
Revision Date Description 

1.0 13-Oct-14 Initial Release 
1.1 29-Aug-16 Add CPU system for Serial console interface 
1.2 9-Nov-16 Add Security erase command 

1.3 30-Jan-17 Update signal to dgIF typeS 
1.4 1-Aug-17 Add LFSR pattern 
1.5 11-May-17 Update the details of reference design 
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