
SHA2 IP Core

SHA2-refdesign-altera-en - 1 - Copyright © 2025 Design Gateway Co., Ltd.

SHA2-IP Reference Design

1 Introduction .. 2

2 Hardware Overview ... 2

2.1 MemBus2Reg Module ... 3

2.2 AsyncBusReg .. 3

2.3 UserReg ... 4

2.3.1 Length Setting ... 6

2.3.2 Parameter Setting ... 7

2.3.3 Hash with Message from User .. 7

2.3.4 Hash with Predefined Constant Patterns .. 8

2.3.5 Hash Output .. 9

3 CPU Firmware .. 11

3.1 Hash with Input Message ... 11

3.2 Hash with Predefined Constant Patterns .. 12

3.3 SHA2 Variant Selection ... 12

4 Revision History ... 13

SHA2 IP Core

SHA2-refdesign-altera-en - 2 - Copyright © 2025 Design Gateway Co., Ltd.

SHA2-IP Reference Design
Rev1.00 23-Apr-2025

1 Introduction

This document provides the details of the SHA2-IP reference design. In this design, the SHA2-IP is used to compute
secure hash values from user-provided messages or predefined constant patterns. Users can configure the SHA2
variant and input messages through a serial console connected to the test PC. More details of the hardware design
and CPU firmware are described as follows.

2 Hardware Overview

Figure 1 SHA2-IP reference design block diagram

In this test environment, the SHA2-IP is connected to user logic, responsible for managing input and output
operations. Both the user logic and SHA2-IP are integrated under the UserReg module. Within this module, the user
logic handles user parameters, input messages, and hash output control, interfacing directly with the SHA2-IP.

As shown in Figure 1, UserReg is implemented inside the MemBus2Reg module. The CPU system communicates
with the FPGA logic through memory-mapped bus (Avalon-MM) and interface with user through serial console in test
PC.

Because CPU system and SHA2-IP operate in different clock domains, the AsyncBusReg block inside MemBus2Reg
is designed as an asynchronous circuit to support clock-crossing operation. Also, AsyncBusReg converts memory-
mapped bus signal which is standard bus in CPU system to be register interface. The details of MemBus2Reg module
are described as follows.

SHA2 IP Core

SHA2-refdesign-altera-en - 3 - Copyright © 2025 Design Gateway Co., Ltd.

2.1 MemBus2Reg Module

The MemBus2Reg module interfaces with the CPU through a memory-mapped bus, such as Avalon-MM. The
hardware registers within MemBus2Reg are mapped to specific CPU memory addresses, as shown in Table 1. These
registers include control and status registers that enable the CPU to access and manage the module.

MemBus2Reg consists of two main sub-modules: AsyncBusReg and UserReg. The AsyncBusReg sub-module is
responsible for converting the signals from the memory-mapped bus into a simple register interface that uses a 32-
bit data bus, maintaining consistency with the bus’s data size. As shown in Figure 1, the MemBus2Reg module
operates with two clock domains: CpuClk, which interfaces with the CPU, and UserClk, which operates in the user-
defined clock domain. The AsyncBusReg sub-module includes circuitry to handle asynchronous communication
between these two clock domains.

UserReg includes the register file of the parameters and the status signals of test logics. Both data interface and
control interface of SHA2-IP are connected to UserReg. More details of AsyncBusReg and UserReg are described
as follows.

2.2 AsyncBusReg

This module is designed to convert the signal interface of a memory-mapped bus into a register interface. Also, it
enables two clock domains, CpuClk and UserClk domain, to communicate.

To write register, RegWrEn is asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the byte enable of this access: bit[0] is used for
RegWrData[7:0], bit[1] is used for RegWrData[15:8], …, and bit[3] is used for RegWrData[31:24]).

To read register, AsyncBusReg asserts RegRdReq=‘1’ with the valid value of RegAddr (the register address in 32-
bit unit). After that, the module waits until RegRdValid is asserted to ‘1’ to get the read data through RegRdData
signal at the same clock.

SHA2 IP Core

SHA2-refdesign-altera-en - 4 - Copyright © 2025 Design Gateway Co., Ltd.

2.3 UserReg

For register file, UserReg is designed to write/read registers, control and check status of the SHA2-IP corresponding
with write register access or read register request from AsyncBusReg module. Memory map inside UserReg module
is shown in Table 1. Timing diagram of register interface is shown in Figure 2.

Table 1 Register map Definition of SHA2-IP

Address Register Name Rd/Wr Description

SHA2 Control register

0x0000 SHA2_VERSION_REG Rd [31:0]: SHA2-IP Version (IPVersion).

0x0010 USER_DATALEN_0_REG Wr/Rd [31:0]: Lower 32-bit of input length (rSHAInLength0).

0x0014 USER_DATALEN_1_REG Wr/Rd [31:0]: Second 32-bit of input length (rSHAInLength1).

0x0018 USER_DATALEN_2_REG Wr/Rd [31:0]: Third 32-bit of input length (rSHAInLength2).

0x001C USER_DATALEN_3_REG Wr/Rd [31:0]: Upper 32-bit of input length (rSHAInLength3).

0x0020 USER_SHA_CMD_REG Wr/Rd [2:0]: SHA2 algorithm selection (rSHAInCMD).

0x0024 USER_SHA_READY_REG Rd [0]: SHA2-IP ready flag. (SHAInReady).

0x0028 USER_SHA_DATAIN_REG Wr [31:0]: Input message data word (rSHAInData).

Hash Stream Output

0x0030 USER_HASH_STM_0_REG Rd [31:0]: Streamed hash output (rHashOutStm[31:0]).

0x0034 USER_HASH_STM_1_REG Rd [31:0]: Streamed hash output (rHashOutStm[63:32]).

0x0038 USER_HASH_STM_2_REG Rd [31:0]: Streamed hash output (rHashOutStm[95:64]).

0x003C USER_HASH_STM_3_REG Rd [31:0]: Streamed hash output (rHashOutStm[127:96]).

0x0040 USER_HASH_STM_4_REG Rd [31:0]: Streamed hash output (rHashOutStm[159:128]).

0x0044 USER_HASH_STM_5_REG Rd [31:0]: Streamed hash output (rHashOutStm[191:160]).

0x0048 USER_HASH_STM_6_REG Rd [31:0]: Streamed hash output (rHashOutStm[223:192]).

0x004C USER_HASH_STM_7_REG Rd [31:0]: Streamed hash output (rHashOutStm[255:224]).

0x0050 USER_HASH_STM_8_REG Rd [31:0]: Streamed hash output (rHashOutStm[287:256]).

0x0054 USER_HASH_STM_9_REG Rd [31:0]: Streamed hash output (rHashOutStm[319:288]).

0x0058 USER_HASH_STM_10_REG Rd [31:0]: Streamed hash output (rHashOutStm[351:320]).

0x005C USER_HASH_STM_11_REG Rd [31:0]: Streamed hash output (rHashOutStm[383:352]).

0x0060 USER_HASH_STM_12_REG Rd [31:0]: Streamed hash output (rHashOutStm[415:384]).

0x0064 USER_HASH_STM_13_REG Rd [31:0]: Streamed hash output (rHashOutStm[447:416]).

0x0068 USER_HASH_STM_14_REG Rd [31:0]: Streamed hash output (rHashOutStm[479:448]).

0x006C USER_HASH_STM_15_REG Rd [31:0]: Streamed hash output (rHashOutStm[511:480]).

SHA2 IP Core

SHA2-refdesign-altera-en - 5 - Copyright © 2025 Design Gateway Co., Ltd.

Address Register Name Rd/Wr Description

Hash Latch Output

0x0070 USER_HASH_LATCH_0_REG Rd [31:0]: Latched hash output (rHashOutLatch[31:0]).

0x0074 USER_HASH_LATCH_1_REG Rd [31:0]: Latched hash output (rHashOutLatch[63:32]).

0x0078 USER_HASH_LATCH_2_REG Rd [31:0]: Latched hash output (rHashOutLatch[95:64]).

0x007C USER_HASH_LATCH_3_REG Rd [31:0]: Latched hash output (rHashOutLatch[127:96]).

0x0080 USER_HASH_LATCH_4_REG Rd [31:0]: Latched hash output (rHashOutLatch[159:128]).

0x0084 USER_HASH_LATCH_5_REG Rd [31:0]: Latched hash output (rHashOutLatch[191:160]).

0x0088 USER_HASH_LATCH_6_REG Rd [31:0]: Latched hash output (rHashOutLatch[223:192]).

0x008C USER_HASH_LATCH_7_REG Rd [31:0]: Latched hash output (rHashOutLatch[255:224]).

0x0090 USER_HASH_LATCH_8_REG Rd [31:0]: Latched hash output (rHashOutLatch[287:256]).

0x0094 USER_HASH_LATCH_9_REG Rd [31:0]: Latched hash output (rHashOutLatch[319:288]).

0x0098 USER_HASH_LATCH_10_REG Rd [31:0]: Latched hash output (rHashOutLatch[351:320]).

0x009C USER_HASH_LATCH_11_REG Rd [31:0]: Latched hash output (rHashOutLatch[383:352]).

0x00A0 USER_HASH_LATCH_12_REG Rd [31:0]: Latched hash output (rHashOutLatch[415:384]).

0x00A4 USER_HASH_LATCH_13_REG Rd [31:0]: Latched hash output (rHashOutLatch[447:416]).

0x00A8 USER_HASH_LATCH_14_REG Rd [31:0]: Latched hash output (rHashOutLatch[479:448]).

0x00AC USER_HASH_LATCH_15_REG Rd [31:0]: Latched hash output (rHashOutLatch[511:480]).

User Control register

0x00B0 USER_HASHVALID_REG Wr/Rd [0]: Status of Hash Stream is valid (rHashValid[0]).
[1]: Status of Hash Latch is valid (rHashValid[1]).

0x00B4 USER_HASHEMPTY_REG Wr [0]: Flag indicating if the input message size is empty
(rSHAInEmpty).

0x00B8 USER_TESTMODE_REG Wr [0]: Flag to enable hash with constant pattern
(rSHAInConsWrEn).
[1]: Flag to enable hash with input message
(rSHAInMessageWrEn).

SHA2 IP Core

SHA2-refdesign-altera-en - 6 - Copyright © 2025 Design Gateway Co., Ltd.

Figure 2 Register interface timing diagram

To read from a register, a multiplexer selects the read data based on UserRegAddr[7:2], which identifies the specific
register. As shown in Figure 2, the read data becomes valid in the next two clock cycles. When UserRegRdReq is
active, rUserRegRdReq is asserted to ‘1’, and rUserRdValid is activated with the valid read data corresponding to
UserRegAddr. For writing to a register, UserRegWrEn is asserted to ‘1’ along with a valid UserRegAddr, indicating
that the register is ready for writing.

In this reference design, there are five main operations related to configuration and data processing. Each operation
is described as follows.

2.3.1 Length Setting

To set the length, the user configures a 128-bit length by writing to the registers USER_DATALEN_0_REG through
USER_DATALEN_3_REG, which correspond to rSHAInlength0[31:0] through rSHAInlength3[31:0] as shown in
Figure 3.

Figure 3 Timing diagram of Length setting process

SHA2 IP Core

SHA2-refdesign-altera-en - 7 - Copyright © 2025 Design Gateway Co., Ltd.

2.3.2 Parameter Setting

For parameter setting, the user can configure the SHA2 algorithm by setting rSHAInCMD[2:0] through the
USER_SHA_CMD_REG. If the user needs to hash an empty message, rSHAInEmpty must be set to ‘0’ by writing to
the USER_HASHEMPTY_REG. Before starting the SHA2-IP, the rHashvalid[2:0] flags should be cleared to zero by
writing to the USER_HASHVALID_REG, as shown in Figure 4.

Figure 4 Timing diagram of parameter setting process

2.3.3 Hash with Message from User

To hash a message from the user, rSHAInMessageWrEn must be set to ‘1’ by writing the value 0x02 to
USER_TESTMODE_REG. This configuration enables rSHAInValid to assert automatically when the user writes a
message. As shown in Figure 5, when the user writes message to rSHAInData[31:0] via USER_SHA_DATAIN_REG,
rSHAInValid will assert in the next clock cycle.

Before each write, the user must ensure SHAInReady=‘1’ by reading USER_SHA_READY_REG to confirm that
SHA2-IP is ready to receive data. After rSHAInValid is asserted, rSHAInLength0 to rSHAInLength3 will decrement
by the number of bytes written in the next clock cycle. For the final data word, rSHAInLast is asserted, and
rSHAInKeep[3:0] is updated to reflect the number of remaining valid bytes.

Figure 5 Timing diagram of Hash with Message from User process

SHA2 IP Core

SHA2-refdesign-altera-en - 8 - Copyright © 2025 Design Gateway Co., Ltd.

2.3.4 Hash with Predefined Constant Patterns

To hash a predefined constant message, the user first writes the message to rSHAInData[31:0] via
USER_SHA_DATAIN_REG. Then, to enable constant message hashing, rSHAInConsWrEn must be set to ‘1’ by
writing 0x01 to USER_TESTMODE_REG. As shown in Figure 6, SHAInValid will assert when rSHAInConsWrEn is
active.

Once rSHAInValid and SHAInReady are both asserted, rSHAInLength0 to rSHAInLength3 will decrement based on
the number of bytes written in the next clock cycle. On the last word, rSHAInLast is asserted, and rSHAInKeep[3:0]
is updated to indicate the remaining valid byte count.

Figure 6 Timing diagram of Hash with Predefined Constant Patterns process

SHA2 IP Core

SHA2-refdesign-altera-en - 9 - Copyright © 2025 Design Gateway Co., Ltd.

2.3.5 Hash Output

SHA2-IP supports two types of output: latched and streamed.

For latched output, the final hash value is stored in rHashOutLatch[511:0] when HashOutValid is asserted. The output
format depends on the selected algorithm via rSHAInCMD[2:0]. When valid, rHashValid[1] is set to ‘1’. Users can
read the latched hash result from USER_HASH_LATCH_0_REG to USER_HASH_LATCH_15_REG.

As shown in Figure 7, for example, when using SHA-256 (rSHAInCMD=“011”), the hash output is latched from
HashOut256[255:0], and available through USER_HASH_LATCH_0_REG to USER_HASH_LATCH_7_REG.

For streamed output, the hash result is shifted into rHashOutStm[511:0]. When SHAOutValid is asserted,
SHAOutData[31:0] is stored into the uppermost 32 bits (rHashOutStm[511:480]), and the rest shifts right by 32 bits.
When both SHAOutValid and SHAOutLast are asserted, rHashValid[0] is set to ‘1’. Users can access the complete
streamed hash via USER_HASH_STM_0_REG to USER_HASH_STM_15_REG.

As shown in Figure 8, for SHA-256 (rSHAInCMD=“011”), the streamed hash is constructed by sequentially writing
SHAOutData[31:0] into rHashOutStm. The final hash can be read from USER_HASH_STM_7_REG to
USER_HASH_STM_15_REG.

Figure 7 Timing diagram of Latched output Hash of SHA-256

SHA2 IP Core

SHA2-refdesign-altera-en - 10 - Copyright © 2025 Design Gateway Co., Ltd.

Figure 8 Timing diagram of Streamed output Hash of SHA-256

SHA2 IP Core

SHA2-refdesign-altera-en - 11 - Copyright © 2025 Design Gateway Co., Ltd.

3 CPU Firmware

After system boot-up, CPU initializes its peripherals such as UART and Timer. Then the supported command usage
is displayed. The main function runs in an infinite loop to show the main menu and get keyboard input from user.
User can select each menu via serial console that will call the related functions. After functions finished running, the
main menu is displayed again. More details of the sequence in each menu are described as follows.

3.1 Hash with Input Message

This menu is used to functionally test the SHA2-IP by generating a hash from a user-provided input message. The
hash2message() function is called to initiate the process. The operational sequence is as follows:

1. Prompt the user to enter the input message
2. Set parameters in the SHA2-IP (input length, SHA variant), and start the timer
3. Write the input message to the SHA2-IP
4. Wait for the hashing process to complete, then stop the timer
5. Display the hash result from the latched output
6. Display the hash result from the streamed output
7. Display the execution time used for hashing

Table 2 hash2message function

void hash2message (unsigned int maxStr, unsigned int cmd)

Parameter unsigned int maxStr: The maximum allowed length of the input string.

unsigned int cmd: The SHA command type (e.g., CMD_SHA256).

Return value None

Description This function prompts the user to enter a message via UART, reads the message, calculates
its SHA hash, displays the hash value, and shows the time taken for the operation.

Table 3 getStr function

void getStr(char *str, unsigned int *strLen)

Parameter char *str: Pointer to the string buffer where the input will be stored.

unsigned int *strLen: Pointer to the length of the string.

Return value None

Description This function continuously reads characters from the UART until a newline is received. The
string is stored in the provided `str` buffer and its length is updated in `strLen`.

Table 4 wrStr function

void wrStr(char *str, unsigned int *strLen)

Parameter char *str: Pointer to the string to be written.

unsigned int *strLen: Pointer to the length of the string.

Return value None

Description This function writes the given string to the SHA input Data four characters at a time. It waits
until the SHA is ready before writing each word.

SHA2 IP Core

SHA2-refdesign-altera-en - 12 - Copyright © 2025 Design Gateway Co., Ltd.

Table 5 show_hash function

void show_hash(unsigned int cmd)

Parameter unsigned int cmd: The SHA command type determining hash length.

Return value None

Description This function reads the hash value from the latched output registers and prints the result in
hexadecimal format to the UART console.

Table 6 show_hash_stm function

void show_hash_stm(unsigned int cmd)

Parameter unsigned int cmd: The SHA command type determining hash length.

Return value None

Description This function reads the hash value from the stream output registers and prints the result in
hexadecimal format to the UART console.

3.2 Hash with Predefined Constant Patterns

This menu is used to evaluate the computational efficiency of the SHA2-IP when processing large volumes of data.
The hash2length() function is called to initiate the process. The operational sequence is as follows:

1. Prompt the user to enter the number of characters for the input message
2. Set parameters in the SHA2-IP (input length, SHA variant), and start the timer
3. Write a single 4-byte word containing the constant pattern to the SHA2-IP
4. After this initial write, the hardware logic automatically streams the constant pattern internally until the full

input length is reached
5. Wait for the hashing process to complete, then stop the timer
6. Display the hash result from the latched output
7. Display the hash result from the streamed output
8. Display the execution time used for hashing

Table 7 show_hash_stm function

void hash2length(unsigned char consValue, unsigned int cmd)

Parameter unsigned char consValue: The constant byte value (e.g., ‘a’) to stream as input data.

unsigned int cmd: The SHA command (e.g., CMD_SHA256).

Return value None

Description This function prompts the user to enter a data length in bytes. It then sets the length in the
register, configures the SHA core to process a stream of constant data, and starts processing.
Finally, it displays the hash value and the time taken for the operation.

3.3 SHA2 Variant Selection

SHA2-IP supports the following algorithm variants: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and
SHA-512/256. This menu allows the user to switch between these variants for hashing different messages based on
desired output length. The default variant after system boot-up is SHA-512.

SHA2 IP Core

SHA2-refdesign-altera-en - 13 - Copyright © 2025 Design Gateway Co., Ltd.

4 Revision History

Revision Date (D-M-Y) Description

1.00 23-Apr-25 Initial version release

