
dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 1

TOE10G-IP with CPU reference design
Rev1.1 2-Apr-18

1 Introduction
TCP/IP is the core protocols of the Internet Protocol Suite for networking application. TCP/IP
model has four layers, i.e. Application Layer, Transport Layer, Internet Layer, and Network Access
Layer. In Figure 1-1, five layers are displayed for simple matching with hardware implementation
by FPGA. Network Access Layer is split into Link and Physical Layer.

Physical Layer

Link Layer

Internet Layer

Transport Layer

Application Layer

PCS/PMA IP

EMAC IP

TCP/IP

Controller IP by

Design Gateway

User Logic

FPGATCP/IP Protocol Layer

Figure 1-1 TCP/IP Protocol Layer

TOE10G-IP implements Transport and Internet layer of TCP/IP Protocol. For transmitted side,
TOE10G-IP prepares TCP data from user logic, add TCP/IP header to generate Ethernet packet,
and sends to EMAC. For received side, TOE10G-IP extracts TCP data and header from Ethernet
packet. If TCP/IP header in the packet is valid, TCP data will be stored to the buffer and wait user
logic reading.

The lower layer protocols are implemented by EMAC-IP and PCS/PMA-IP from Xilinx.

The reference design provides evaluation system which includes simple user logic to send and
receive data by using TOE10G-IP. For user interface, CPU system is designed to interface with
user through Serial console. The firmware is designed as bare-metal OS. Two test applications
are applied in the demo, i.e. “tcpdatatest” for half-duplex test and “tcp_client_txrx_10G” for
full-duplex test. The reference design is available on Xilinx development board to show ultra
high-speed transfer with network reliability. More details of the demo are described as follows.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 2

2 Hardware overview

Figure 2-1 Demo Block Diagram

In test environment, two devices are used for 10Gb Ethernet transferring. First device runs in
client mode and another runs in server mode. To confirm TOE10G-IP operation in both modes,
the demo can be tested by using two test environments. First is using two FPGAs (one is client
and one is server). Second is using one FPGA and one PC, as shown in Figure 2-1.

In FPGA logic, TOE10G-IP connects to 10G Ethernet MAC and 10G Ethernet PCS/PMA to
complete all TCP/IP layer implementation. For Ultrascale+ device, it uses 10G/25G Ethernet
Subsystem instead of 10G Ethernet. The user interfaces of TOE10G-IP are connected to
LAxi2Reg. For data interface, UserReg includes PattGen to generate test pattern to TOE10G-IP.
Also, VerifyPatt is designed to verify received data from TOE10G-IP. Test pattern in the reference
design is 32-bit increment data.

For control interface, LAxi2Reg includes register to store test parameters from user such as
transfer length and transfer direction. User inputs parameters through Serial console. CPU
firmware validates all parameters and sets to the hardware through AXI4-Lite bus. Due to the fact
that CPU system and TOE10G-IP run in different clock domain, AsyncAXIReg module is used to
be asynchronous circuit to support clock-crossing function and convert AXI4-Lite bus signal which
is standard bus in CPU system to be register interface. CPU in the demo runs in bare-metal OS.
Timer is also included in CPU system for measuring transfer performance.

Two applications on PC are applied in the demo. The first application is “tcpdatatest.exe” which is
designed to send or receive Ethernet data with TOE10G-IP. Data transferring is half-duplex mode.
The second application is “tcp_client_txrx_10G.exe” which is designed to send and receive
Ethernet data by using same TCP port number at the same time (full-duplex mode). In full-duplex
mode, PattGen and VerifyPatt module inside UserReg transfer data with TOE10G-IP in both
directions at the same time.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 3

2.1 10G (10G/25G) EMAC and PCS/PMA

Both link layer and physical layer of 10G Ethernet are implemented by using Xilinx IP core.
10G (10G/25G) EMAC implements the link layer while 10G (10G/25G) Ethernet PCS/PMA
implements the physical layer. Data path of EMAC is 64-bit AXI4 stream interface.

Tx interface timing diagram of Xilinx EMAC and TOE10G-IP are different. TOE10G-IP needs
to send data of one packet continuously, but Xilinx EMAC does not support this feature. Xilinx
EMAC may de-assert ready signal to receive data during packet transferring (between
start-of-frame and end-of-frame). TenGMacIF needs to be designed to store transmitted data
from TOE10G-IP when Xilinx EMAC is not ready to receive new data.

10G/25G EMAC does not include zero padding function. TenGMacIF for connecting with
10G/25G EMAC Subsystem needs to add zero padding when transmitted packet size from
TOE10G-IP is less than 60 bytes. More details of 10G (10G/25G) EMAC and PCS/PMA are
described in following link.

10G Ethernet MAC and PCS/PMA
https://www.xilinx.com/products/intellectual-property/do-di-10gemac.html
https://www.xilinx.com/products/intellectual-property/10gbase-r.html

10G/25G Ethernet Subsystem
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html

2.2 TOE10G-IP

TOE10G-IP implements TCP/IP stack and offload engine. Control and status signals for user
interface are accessed through register interface. Data interface is accessed through FIFO
interface. More details are described in datasheet.
http://www.dgway.com/products/IP/TOE10G-IP/dg_toe10gip_data_sheet_xilinx_en.pdf

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 4

2.3 TenGMacIF

Figure 2-2 TenGMacIF Block Diagram

This module is designed to be adapter logic connecting between Tx interface of TOE10G-IP
and Tx interface of 10G Ethernet MAC. ToeMacReady output to TOE10G-IP must be always
asserted to ‘1’ during transferring the 1st data and the last data. Following Xilinx 10G Ethernet
MAC specification, tx_axis_tready of Xilinx EMAC may be de-asserted to ’0’ during
transferring start-of-frame and end-of-frame. So, timing diagram of TOE10G-IP and Xilinx
EMAC does not match. TenGMacIF including small FIFO must be designed to store the data
from TOE10G-IP when 10G Ethernet MAC is not ready to receive new data.

Otherwise, 10G/25G Ethernet Subsystem does not include zero padding function. So,
TenGMacIF needs to add zero data to the packet which the size is less than 60 bytes.
ToeMacReady output to TOE10G-IP for normal packet is designed by following sequence.

As shown in Figure 2-3, when free space in FIFO is much enough (FfDataCnt is less than 16)
and previous transmit packet is completed more than two clock cycles (rToeMacReady[2]
which is 2-clock delayed from ToeMacReady is de-asserted to ‘0’), ToeMacReady is asserted
to ‘1’ to show ready status for receiving the new packet. The new packet from TOE10G-IP is
transferred to TenGMacIF continuously because ToeMacReady is always asserted to ‘1’.
ToeMacReady is de-asserted to ‘0’ after last data is received (ToeMacLast is asserted to ‘1’).
So, new packet from TOE10G-IP is not transferred until ToeMacReady is re-asserted to ‘1’.

Internal FIFO is designed to store 73-bit inputs, i.e. 64-bit data (ToeMacData), 8-bit byte
enable signal (ToeMacKeep), and last flag (ToeMacLast).

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 5

Figure 2-3 Write FIFO timing diagram of TenGMacIF

FfEmpty

FfRdEn

tx_axis_tready

tx_axis_tvalid

tx_axis_tdata/

tkeep/tlast
DK0 DK1 DK2 DK3 DK4

(1) FfRdEn is asserted to ‘1’ when there

are available data in FIFO (FfEmpty=’0')

1

2

(2) tvalid is asserted to ‘1’ in the next clock after

FfRdEn=’1'. Also, tdata/tkeep/tlast which is data output

from FIFO is valid at the same clock as tvalid asserting.

3

(3) FfRdEn is de-asserted to ‘0’

when tready is de-asserted to ‘0’

to pause data transferring

5

4

(4) FfRdEn is de-asserted to ‘0’

when FIFO is empty

(5) tvalid is de-asserted to ‘0’

when complete data transferring

(FfRdEn=’0' and tready=’1')

Figure 2-4 Read FIFO timing diagram of TenGMacIF

When data is available in FIFO (FfEmpty=’0’), FfRdEn is asserted to ‘1’ to transfer data from
FIFO to Ethernet MAC. In the next clock, tx_axis_tvalid is asserted to ‘1’ with the valid data for
transferring to EMAC. When EMAC is not ready to receive data (tx_axis_tready=’0’), FfRdEn
is de-asserted to ‘0’ to pause data transmission. When FIFO is empty, FfRdEn is de-asserted
to ‘0’. After that, tx_axis_tvalid is de-asserted to ‘0’ to complete data transferring.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 6

ToeMacData[7:0]

ToeMacKeep[7:0]

0x00
rTxData[7:0]

ToeMacData[63:56]

0x00
rTxData[63:56]

.

ToeMacKeep[7:0]

ToeMacValid

0xFF

0x0F rTxKeep[71:64]

ToeMacLast

‘0’

‘1’ rTxLast[72]

.

Bypass or Zero padding Controller

FfWrData[72:0]

DEC

FfDataCnt
ToeMacReady

rFfWrEn

CNT

0-7

rDataCnt[2:0]

0

1

0

1

Figure 2-5 Data path of zero padding function

Figure 2-5 shows the logic to fill zero padding data when total packet size is less than 60 bytes
when using 10G/25G Ethernet system. 3-bit data counter is designed to count data size
whether data less than 60 bytes or not. rFfWrEn is asserted to ‘1’ to fill zero padding data until
data counter=7 (packet size is more than or equal to 60 bytes). rTxData is selected between
data signal from TOE10G-IP or zero value for zero-padding. Each bit of ToeMacKeep is used
to be byte valid of ToeMacData and used to select data to forward to FIFO to between
ToeMacData or 0x00.

rTxKeep is fixed to 0xFF for QWord 0-6. For QWord 7 (last QWord for minimum size),
rTxKeep is fixed to 0x0F to pass 60 bytes for zero-padding feature or bypass from
ToeMacKeep for normal packet (the packet size is more than 60 byte). For QWord 8 or more,
rTxKeep is forwarded from TOE10G-IP directly.

Similar to rTxKeep, rTxLast is fixed to ‘0’ for QWord 0-6. rTxLast is asserted to ‘1’ at QWord 7
for zero-padding feature. If packet size is more than 60 bytes, rTxLast will be forwarded from
ToeMacLast.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 7

2.4 LAxi2Reg

The hardware is connected to CPU through AXI4-Lite bus, similar to other CPU peripherals.
The hardware registers are mapped to CPU memory address, as shown in Table 2-1. The
control and status registers for CPU access are designed in LAxi2Reg.

LAxi2Reg connects to TOE10G-IP for both data path and control path. As shown in Figure 2-6,
there are two clock domains applied in this block, i.e. 100 MHz (CpuClk) which is used to
interface with CPU through AXI4-Lite bus and 156.25 MHz (MacClk) which is user clock
domain for TOE10G-IP and EMAC.

AsyncAxiReg includes asynchronous circuit between 100 MHz and 156.25 MHz. More details
of each hardware are described as follows.

CPU

AXI4 Lite bus

Register

Interface

Address

Decoder

Register Set

(Write)

Reg I/F

(User)

Data

Multiplexer

(Read)

Tx Pattern

Generator

Rx Data

Verification

TCPTxFfFull

TCPTxFfWrData[63:0]

TCPTxFfWrEn

TCPRxFfRdEmpty

TCPRxFfRdEn

TCPRxFfRdData[63:0]

Reg I/F

(TOE10G-IP)

UserReg

TOE10G-IP

100 MHz (CpuClk)

156.25 MHz (MacClk)
AsyncAxiReg

LAxi2Reg

Figure 2-6 LAxi2Reg block diagram

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 8

2.4.1 AsyncAxiReg

This module is designed to convert signal interface of AXI4-Lite to be register interface. Also,
it supports to convert clock domain from 100 MHz to be 156.25 MHz. Timing diagram of
register interface is shown in Figure 2-7.

To write register, timing diagram is same as RAM interface. RegWrEn is asserted to ‘1’ with
the valid signal of RegAddr (Register address in 32-bit unit), RegWrData (write data of the
register), and RegWrByteEn (the byte enable of this access: bit[0] is write enable for
RegWrData[7:0], bit[1] is used for RegWrData[15:8], …, and bit[3] is used for
RegWrData[31:24]).

To read register, AsyncAxiReg asserts RegRdReq=’1’ with the valid value of RegAddr (the
register address in 32-bit unit). After that, the module waits until RegRdValid is asserted to ‘1’
to get the read data through RegRdData signal.

Figure 2-7 Register interface timing diagram

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 9

2.4.2 UserReg

Address

DecoderUserRegAddr[13:0]

UserRegWrEn
1004h

FF

S

R
rTxTrnEn

TCPTxFfFull

UserRegBlue: Tx Pattern Generator

Red: Rx Data Verification

Black: Write/Read Register

CMP

==

FF
TCPTxFfWrEn

Tx Data

Counter

Patt

Gen

TCPTxFfWrData[63:0]rTotalTxCnt

1000h DFF

UserRegWrData[31:0]

rSetTxSize

TCPRxFfRdEmpty

TCPRxFfRdEn
FF

Rx Data

Counter

CMP

==

rTotalRxCnt Patt

Gen
wExpPatt

TCPRxFfRdData[63:0]
rFail

RdData

Mux

UserRegRdData[31:0]

FF
UserRegRdValid

UserRegRdReq

Async

AvlReg

TCPRegRdData[31:0]

TCPRegWrData[31:0]

TCPRegAddr[3:0]

TOE10G

IP

CMP
TCPRegWrEn

rFfRdEn

Figure 2-8 UserReg block diagram

Memory map of control and status signals inside UserReg module is shown in Table 2-1.
0x0000 – 0x00FF is mapped to registers inside TOE10G-IP.
0x1000 – 0x10FF is mapped to registers inside UserReg (to control Tx Pattern Generator and
Rx Data Verification).

To request write register, UserRegWrEn is asserted to ‘1’ with the valid of UserRegAddr. The
upper bits of UserRegAddr are forwarded to check whether the address is in TOE10G-IP
range or not. If the address is in TOE10G-IP range, TCPRegWrEn will be asserted to ‘1’. For
internal register of UserReg, UserRegWrData is loaded to internal register when the address
is matched. For example, rSetTxSize is loaded by UserRegWrData when
UserRegAddr=0x1000. UserRegWrByteEn signal is not used in this module, so CPU
firmware needs to access the hardware register by using 32-bit pointer only.

For read request, UserRegRdReq is asserted to ‘1’. RdDataMux selects status signals from
internal register or TOE10G-IP, and forwards to UserRegRdData in the next clock. To
synchronous with UserRegRdData, RegRdValid is designed by using one D Flip-flop, input by
RegRdReq signal.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 10

The upper logic in blue color of Figure 2-8 is designed to generate test data to TOE10G-IP.
rTxTrnEn is asserted to ‘1’ when write register address is 1004h. When rTxTrnEn is ‘1’,
TCPTxFfWrEn is controlled by TCPTxFfFull. TCPTxFfWrEn is de-asserted to ‘0’ when
TCPTxFfFull is ‘1’. rTotalTxCnt is data counter to check total transfer data to TCPTxFf.
rTotalTxCnt is also used to generate 32-bit increment data to TCPTxFfWrData signal.
rTxTrnEn is de-asserted to ‘0’ when total transfer size is equal to the set value (rSetTxSize).

TCPTxFfFull

TCPTxFfWrEn

rTotalTxCnt[31:0] 0 1 2 3 SetTx
Size-1

(1) TCPTxFfWrEn is asserted

to ‘1’ when rTxTrnEn=’1'

(5) TCPTxFfWrEn is de-asserted to ‘0’

after complete to transfer all data

(rTotalTxCnt=SetTxSize – 1)

rTxTrnEn

TCPTxFfWrData[63:0] D0 D1 D2 D3 Dn-1

SetTxSize

1

2

(3) rTotalTxCnt is increased

when TCPTxFfWrEn=’1'

(2) TCPTxFfWrData is created by

rTotalTxCnt and updated in the same time

3

4

(4) TCPTxFfWrEn is de-asserted

to ‘0’ when TCPTxFfFull=’1'

5

Figure 2-9 Tx Pattern Generator Timing diagram

The logic in red color of Figure 2-8 is designed to verify received data from TOE10G-IP.
TCPRxFfRdEn is designed by using NOT logic of TCPRxFfRdEmpty. TCPRxFfRdData is
valid in the next clock after asserting TCPRxFfRdEn to ‘1’. Read data (TCPRxFfRdData) is
compared to expected pattern (wExpPatt) which is designed by rTotalRxCnt. rTotalRxCnt is
data counter to check total transfer data from TCPRxFf. Similar to Tx path, expected pattern is
32-bit increment pattern. Fail flag (rFail) will be asserted to ‘1’ if Read Data is not equal to
expected pattern.

Figure 2-10 Rx Data Verification Timing diagram

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 11

Table 2-1 Register map Definition

Address Register Name Description

Wr/Rd (Label in the “toe10gip_demo.c”)

BA+0x0000 – BA+0x00FF: TOE10G-IP Register Area

More details of each register are described in Table3 of TOE10G-IP datasheet.

BA+0x00 TOE10_RST_REG Mapped to RST register within TOE10G-IP

BA+0x04 TOE10_CMD_REG Mapped to CMD register within TOE10G-IP

BA+0x08 TOE10_SML_REG Mapped to SML register within TOE10G-IP

BA+0x0C TOE10_SMH_REG Mapped to SMH register within TOE10G-IP

BA+0x10 TOE10_DIP_REG Mapped to DIP register within TOE10G-IP

BA+0x14 TOE10_SIP_REG Mapped to SIP register within TOE10G-IP

BA+0x18 TOE10_DPN_REG Mapped to DPN register within TOE10G-IP

BA+0x1C TOE10_SPN_REG Mapped to SPN register within TOE10G-IP

BA+0x20 TOE10_TDL_REG Mapped to TDL register within TOE10G-IP

BA+0x24 TOE10_TMO_REG Mapped to TMO register within TOE10G-IP

BA+0x28 TOE10_PKL_REG Mapped to PKL register within TOE10G-IP

BA+0x2C TOE10_PSH_REG Mapped to PSH register within TOE10G-IP

BA+0x30 TOE10_WIN_REG Mapped to WIN register within TOE10G-IP

BA+0x34 TOE10_ETL_REG Mapped to ETL register within TOE10G-IP

BA+0x38 TOE10_SRV_REG Mapped to SRV register within TOE10G-IP

BA+0x1000 – BA+0x10FF: UserReg control/status

BA+0x1000 Total transmit length Wr [31:0] – Total transmitted size in Qword unit (64-bit). Valid from

1-0xFFFFFFFF.

Rd [31:0] – Current transmitted size in Qword unit (64-bit). The value

is cleared to 0 when USER_CMD_REG is written by user.

Wr/Rd (USER_TXLEN_REG)

BA+0x1004 User Command Wr

[0] – Start Transmitting. Set ‘1’ to start transmitting.

This bit is auto-cleared to ‘0’ after end of total transfer.

[1] – Data Verification enable

(‘0’: Enable data verification, ‘1’: Disable data verification)

Rd

[0] – Tx Busy. (‘0’: Idle, ‘1’: Tx module is busy)

[1] – Data verification error (‘0’: Normal, ‘1’: Error)

This bit is auto-cleared when user starts new operation or reset.

[2] – Mapped to ConnOn signal of TOE10G-IP

Wr/Rd (USER_CMD_REG)

BA+0x1008 User Reset Wr

[0] – Reset signal. Set ‘1’ to reset the logic.

This bit is auto-cleared to ‘0’.

[8] – Set ‘1’ to clear TimerInt latch value

Rd [8] – Latch value of TimerInt output from IP

(‘0’: Normal, ‘1’: TimerInt=’1’ is detected)

This flag can be cleared by system reset condition or setting

USER_RST_REG[8]=’1’.

Wr/Rd (USER_RST_REG)

BA+0x100C FIFO status Rd [2:0]: Mapped to TCPRxFfLastRdCnt signal of TOE10G-IP

[15:3]: Mapped to TCPRxFfRdCnt signal of TOE10G-IP

[24]: Mapped to TCPTxFfFull signal of TOE10G-IP

Rd (FIFO_STS_REG)

BA+0x1010 Total Receive length Rd [31:0] – Current received size in Qword unit (64-bit). The value is

cleared to 0 when USER_CMD_REG is written by user. Rd (TRN_RXLEN_REG)

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 12

3 CPU Firmware Sequence

After FPGA boot-up, user must select the operation mode on FPGA to be client or server. The
operation mode is the set value for TOE10_SRV_REG register. In client mode, FPGA sends ARP
request to get the MAC address from the destination device during initialization sequence. In
server mode, FPGA waits ARP request from the destination device and returns ARP reply during
initialization sequence.

To run the test by using two FPGAs, the operation mode on each FPGA must be set to different
value (one is client and another is server). In case of running FPGA with PC, it is recommended to
set FPGA to client mode. It is easier for PC to return ARP reply after receiving ARP request than
forcing PC to send ARP request.

In the firmware, there are two default parameters for each operation mode. The initialization
sequence after system boot-up is as follows.
1) CPU receives the operation mode from user and displays default parameters on the console.
2) User inputs ‘x’ to complete initialization sequence by using default parameters or inputs other

keys to change some parameters. In case of changing parameters, the operation sequence is
same as Reset IP which is described in topic 3.2.

3) CPU waits until TOE10G-IP completes initialization sequence (TOE10_CMD_REG[0]=’0’).
4) Main menu is displayed with five operations which are described in more details as follows.

3.1 Show parameters

This menu is used to show current parameters of TOE10G-IP such as operation mode,
source MAC address, destination IP address, source IP address, destination port, and source
port. The sequence of display parameters is as follows.
1) Read network parameter from each variable in firmware.
2) Print out each variable.

3.2 Reset IP

This menu is used to change TOE10G-IP parameters such as IP address, source port number.
After setting TOE10G-IP register, CPU resets the IP to re-initialize by using new parameters.
CPU monitors busy flag to wait until the initialization is completed. The sequence of reset
sequence is shown as follows.
1) Display current parameter value to the console.
2) Receive input parameters from user and check input value whether it is in a valid range or

not. If the input is invalid, the invalid input will not be changed.
3) Force reset to IP by setting TOE10_RST_REG[0]=’1’.
4) Set all parameters to TOE10G-IP register such as TOE10_SML_REG, TOE10_DIP_REG.
5) De-assert IP reset by setting TOE10_RESET_REG[0]=’0’.
6) Clear user logic status by sending reset to user logic (USER_RST_REG[0]=’1’).
7) Monitor IP busy flag (TOE10_CMD_REG[0]). Wait until busy flag is de-asserted to ‘0’ to

confirm that initialization sequence is completed.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 13

3.3 Send data test

Three user inputs are required to set total transmit length, packet size, and connection mode
(active open for client operation or passive open for server operation). The operation will be
cancelled if the input is invalid. During the test, 32-bit increment data is generated from the
logic and sent to PC/FPGA. Test application on PC or verification module in FPGA verifies the
received data. The operation is completed when total data are transferred from FPGA to
PC/FPGA completely. The sequence of this test is as follows.

1) Receive transfer size, packet size, and connection mode from user and verify that the
value is valid.

2) Set UserReg registers, i.e. transfer size (USER_TXLEN_REG), reset flag to clear initial
value of test pattern (USER_RST_REG), and command register to start data pattern
generator (USER_CMD_REG=0). After that, test pattern generator in UserReg transmits
data to TOE10G-IP.

3) Display recommended parameter of test application running on PC by reading current
parameters in the system.

4) Open connection following connection mode value.
a. For active open, CPU sets TOE10_CMD_REG=2 and monitors ConnOn status until it is

equal to ‘1’ (USER_CMD_REG[2]).
b. For passive open, CPU waits until connection is opened by PC/FPGA by monitoring

ConnOn status = ‘1’ (USER_CMD_REG[2]).
5) Set packet size to TOE10G-IP register (TOE10_PKL_REG) and calculate total loops from

total transfer size. Maximum transfer size of each loop is 4 GB. The operation of each loop
is as follows.
a. Set transfer size of this loop to TOE10G-IP register (TOE10_TDL_REG). The set value

is equal to remaining transfer size for the last loop or equal to 4 GB for other loops.
b. Set send command to TOE10G-IP register (TOE10_CMD_REG=0).
c. Wait until operation is completed by monitoring TOE10_CMD_REG[0]=’0’. During

waiting, CPU reads current transfer size from user logic (USER_TXLEN_REG and
USER_RXLEN_REG) and displays on the console every second.

6) Set close connection command to TOE10G-IP register (TOE10_CMD_REG=3).
7) Calculate performance and show test result on the console.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 14

3.4 Receive data test

User sets total received size, selects data verification mode (enable or disable), and
connection mode (active open for client operation or passive open for server operation). The
operation will be cancelled if the input is invalid. During the test, 32-bit increment data is
generated to verify the received data from PC/FPGA when data verification mode is enabled.
The sequence of this test is as follows.
1) Receive total transfer size, data verification mode, and connection mode from user input.

Verify that all inputs are valid.
2) Set UserReg registers, i.e. reset flag to clear initial value of test pattern

(USER_RST_REG), and data verification mode (USER_CMD_REG[1]=’0’ or ‘1’).
3) Display recommended parameter (same as Step 3 of Send data test).
4) Open connection following connection mode value (same as Step 4 of Send data test).
5) Wait until connection is closed by PC/FPGA by monitoring Connon status

(USER_CMD_REG[2]=’0’). During waiting, CPU reads current transfer size from user
logic (USER_TXLEN_REG and USER_RXLEN_REG) and displays on the console every
second.

6) Check that total received length of user logic (USER_RXLEN_REG) is equal to set value
from user and verification result is not failed (USER_CMD_REG[1]) = ‘0’). If the error is
detected, error message will be displayed.

7) Calculate performance and show test result on the console.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 15

3.5 Full duplex test

This menu is designed to run full duplex test by transferring data between FPGA and
PC/FPGA in both directions at the same time and same port number. Four inputs are received
from user, i.e. total size for both directions, packet size for FPGA sending logic, data
verification mode for FPGA receiving logic, and connection mode (active open/close for client
operation or passive open/close for server operation).

To test this mode by using PC and FPGA, transfer size for sending and receiving logic is fixed
to maximum size (32 GB) which is equal to the size setting in “tcp_client_txrx_10G”
application. Also, connection mode must be set to passive (server operation) to run with
“tcp_client_txrx_10G” application.

The test runs in forever loop until user cancels operation on PC (input Ctrl+C) in case
transferring data between PC and FPGA or user cancels operation on Serial console in case
transferring data between FPGA and FPGA. The sequence of this test is as follows.
1) Receive total data size, packet size, data verification mode, and connection mode from

user and verify that the value is valid.
2) Display recommended parameter of test application running on PC by reading current

parameters in the system.
3) Set UserReg registers, i.e. transfer size (USER_TXLEN_REG), reset flag to clear initial

value of test pattern (USER_RST_REG), and command register to start data pattern
generator with data verification mode (USER_CMD_REG=1 or 3).

4) Open connection following connection mode value (same as Step 4 of Send data test).
5) Set TOE10G-IP registers, i.e. packet size (TOE10_PKL_REG=user input) and calculate

total transfer size in each loop. Maximum size of one loop is 4 GB. The operation of each
loop is as follows.

a. Set transfer size of this loop to TOE10_TDL_REG. Transfer size in each loop except the
last loop is set to align the packet size to achieve the best performance. Transfer size in
the last loop is equal to the remaining size which may not be aligned to packet size.

b. Set send command to TOE10G-IP register (TOE10_CMD_REG=0).
c. Wait until send command is completed by monitoring TOE10_CMD_REG[0]=’0’.

During waiting, CPU reads current transfer size from user logic (USER_TXLEN_REG
and USER_RXLEN_REG) and displays on the console every second.

6) Close connection following connection mode value.
a. For active close, CPU waits until received transfer size is equal to set value. Then, set

USER_CMD_REG=3 to close connection and wait until connection is closed
(USER_CMD_REG[2]=’0’).

b. For passive close, CPU waits until connection is closed from FPGA/PC by monitoring
ConnOn signal (USER_CMD_REG[2]=’0’).

7) Check received result and error (same as Step 6 of Receive data test).
8) Calculate performance and show test result on the console. Go back to step 3 to run the

test in forever loop.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 16

4 Test Software Sequence

4.1 “tcpdatatest” for half duplex test

Figure 4-1 “tcpdatatest” application usage

“tcpdatatest” is designed to run on PC for sending/receiving TCP data through Ethernet for
both server and client mode. PC of this demo runs in client mode only. User inputs parameter
to select transfer direction and the mode. Six parameters are required, i.e.
1) Mode: c – when PC runs in client mode and FPGA runs in server mode
2) Dir: t – transmit mode (PC sends data to FPGA)

r – receive mode (PC receives data from FPGA)
3) ServerIP: IP address of FPGA when PC runs in client mode (default is 192.168.7.42)
4) ServerPort: Port number of FPGA when PC runs in client mode (default is 4000)
5) ByteLen: Total transfer size in byte unit. This input is used in transmit mode only and is

ignored in receive mode. In receive mode, application is closed when connection is
destroyed. ByteLen in transmit mode must be equal to transfer size setting in Serial
console (under received data test submenu).

6) Pattern:
0 – Generate dummy data in transmit mode or disable data verification in receive mode.
1 – Generate increment data in transmit mode or enable data verification in receive mode.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 17

Transmit data mode
Following is the sequence when test application runs in transmit mode.
1) Allocate 1 MB memory to be send buffer.
2) Create socket and set properties of send buffer.
3) Create new connection to server by using IP address and port number from user.
4) Generate increment test pattern to send buffer when test pattern is enabled. Skip this step

if dummy pattern is selected.
5) Send data out and decrease remaining transfer size.
6) Print total transfer size every second.
7) Run step 4) – 6) in the loop until remaining transfer size is 0.
8) Close socket and print total size and performance.

Receive data mode
Following is the sequence when test application runs in receive mode.

1) Allocate 1 MB memory to be received buffer.
2) Create socket and set properties of received buffer.
3) Same step as step3) in Transmit data mode.
4) Read data from received buffer and increase total received data size.
5) If verification is enabled, data will be verified with increment pattern and error message will

be printed out when data is not correct. Skip this step if data verification is disabled.
6) Print total transfer size every second.
7) Run step 4) – 6) in the loop until connection status is closed.
8) Close socket and print total size and performance.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 18

4.2 “tcp_client_txrx_10G” for full duplex test

Figure 4-2 “tcp_client_txrx_10G” application usage

“tcp_client_txrx_10G” application is designed to run on PC for sending and receiving TCP
data through Ethernet by using same port number at the same time. The application is run in
client mode, so user needs to input server parameters. As shown in Figure 4-2, there are
three parameters to run the application, i.e.

1) ServerIP: IP address of FPGA (default is 192.168.7.42)
2) ServerPort: Port number of FPGA (default is 4000)
3) Verification:

0 – Generate dummy data for sending function and disable data verification for receiving
function. This mode is used to check the best performance of full-duplex transfer.
1 – Generate increment data for sending function and enable data verification for receiving
function.

The sequence of test application is as follows.
(1) Allocate 60 KB memory for send and receive buffer.
(2) Create socket and set properties.
(3) Create new connection by using IP address and port number from user.
(4) Generate increment test pattern to send buffer when test pattern is enabled. Skip this step

if dummy pattern is selected.
(5) Send data out and decrease remaining transfer size.
(6) Read data from received buffer and increase total received data size.
(7) If verification is enabled, data will be verified by increment pattern and error message will

be printed out when data is not correct. Skip this step if data verification is disabled.
(8) Print total transfer size every second
(9) Run step 5) – 8) until total sending/receiving data are equal to 32 GB.
(10) Print total size and performance and close socket.
(11) Sleep for 1 millisecond to wait the hardware complete current test loop.
(12) Run step 3) – 11) in forever loop. If verification is fail, the application will quit.

dg_toe10gip_cpu_refdesign.doc

2-Apr-18 Page 19

5 Revision History

Revision Date Description

1.0 22-Jan-18 Initial version release
1.1 2-Apr-18 Support FPGA<->FPGA connection

