
dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 1

TOE40G-IP reference design by Intel PAC A10GX
Rev1.0 4-Jul-19

1 Intel PAC Overview

Figure 1-1 Intel PAC with Intel Arria10GX FPGA

As described in UG-20166 (Intel Acceleration Quick Start Guide for Intel PAC with A10 GX), the
Intel PAC (Intel Programmable Acceleration Card) provides the acceleration platform to free the
Intel Xeon processor by offloading computationally intensive tasks. So, Xeon processor is free for
running other critical processing tasks. Intel PAC connects to the Intel Xeon processor through the
PCIe interface on the motherboard.

UG-20166 could be downloaded by following link.
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.htm
l

Figure 1-2 Intel PAC installation on Motherboard

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 2

Intel PAC is a collection of software, firmware, and tools that allows both software and RTL
developers to take advantage of the power of Intel FPGAs. The overview of Intel PAC platform
hardware and software is shown in Figure 1-3.

Figure 1-3 Intel PAC hardware and software overview

The hardware on Intel PAC platform has two parts, i.e. static region which is called FIM (FPGA
Interface Manager) and partial reconfiguration region which is called AFU (Accelerator Functional
Unit).

FIM owns all hard IPs on FPGA such as PLLs, PCIe IP core, DDR memory interfaces, high speed
serial interface, and partial reconfiguration (PR) engine to load AFUs. After power up, FPGA
configures the FIM only. Next, the software programs AFU images. AFU is FPGA logic designed
by user to be CPU offload engine or hardware accelerator. User can design multiple AFUs to
swap in and out of PR region. AFU could be designed by RTL or OpenCL.

OPAE (Open Programmable Acceleration Engine) software running on the Intel Xeon processor
handles all the details of the reconfiguration process. Otherwise, the OPAE provides libraries,
drivers, and sample programs useful for AFU development.

Typically, when user implements some offload engines, it needs to design the logic on AFU and
develop the software running on Xeon processor. Address mapping for control register is also
implemented in AFU. The details of the interface between Xeon processor and FIM are shown in
Figure 1-4.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 3

Figure 1-4 FPGA Interface Manager

The FIM consists of FIU (FPGA Interface Unit), EMIF, and HSSI. The AFU communicates with
Intel Xeon processor by using CCI-P (Core Cache Interface) standard interface. CCI-P is the host
interface which defines the CCI-P protocol and signaling interface and can be implemented on
platform interfaces like PCIe.

In this reference design, there is no main memory write or read request from AFU. So, Tx.c0 and
Tx.c1 for request main memory are not used. CCI-P is applied to generate MMIO read request
and MMIO write requests for accessing the AFU register from the CPU. MMIO Write and Read
request are received over Rx.c0 channel. The response to return data uses Tx.C2 channel for
MMIO read request. CCI-P drives data of MMIO write request over Rx.c0 channel. More details of
CCI-P could be downloaded by following link.
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.htm
l

https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 4

Figure 1-5 High Speed Serial Interface

As described in UG-20188, the Intel PAC with Arria 10 GX features a QSFP+ network port that
can be configured for either 4x10GBASE-SR or 40GBASE-SR4 operation. In this reference
design, HSSI is configured as 40GBASE-SR4 to transfer 40G Ethernet packet with external
network device such as PC. HSSI includes only PMA IP while PCS IP is implemented with 40GbE
EMAC IP within AFU. More details of HSSI could be downloaded by following link.
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.htm
l

IP Catalog of Quartus tool generates 40GbE EMAC IP subsystem which includes EMAC IP, PCS
IP, and PMA IP, but PMA IP has already included in HSSI as shown in Figure 1-5. To implement
40GbE on Intel PAC, the EMAC IP needs to remove PMA IP. The EMAC without PMA IP is
available in the 40GbE AFU design example which is located in the same location as the sample
AFUs from the OPAE SDK installation. More details are described in Topic “4. Using the Design
Example as a Platform for Further Evaluation” of UG-20163: 40Ggbps Ethernet Accelerator
Functional Unit (AFU) Design Example User Guide.
https://www.intel.com/content/www/us/en/programmable/documentation/pee1521131718500.ht
ml

https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html
https://www.intel.com/content/www/us/en/programmable/documentation/pee1521131718500.html
https://www.intel.com/content/www/us/en/programmable/documentation/pee1521131718500.html

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 5

Figure 1-6 TOE40G-IP integrated on the Intel PAC platform

To build 40G Ethernet demo by using TOE40G-IP integrated on Intel PAC, the hardware of AFU
and the user application running on OPAE must be designed as shown in Figure 1-6.
TOE40AFUTest is the AFU logic which includes CCI-P interface for register access by CPU and
HSSI interface for 40G Ethernet I/O. The user application to set control register and parameter
running on Intel Xeon is toe40gtest.

The destination network device to transfer 40 Gb Ethernet packet by using TCP/IP protocol may
be 40 GbE Adapter or the FPGA board including 40 Gb Ethernet connection. When connecting 40
GbE Adapter to PCIe connector in the same PC as Intel PAC, the Intel Xeon must run another test
software to transfer data following TCP/IP protocol, i.e. tcpdatatest (half-duplex test) or
tcp_client_txrx (full duplex test), provided by Design Gateway.

When using TOE40G-IP implemented on another FPGA (Arria10 GX board or Intel PAC), the best
performance for transferring TCP/IP data is achieved. The details to setup TOE40G-IP with CPU
reference design on another FPGA are downloaded from following link.
https://dgway.com/products/IP/TOE40G-IP/dg_toe40gip_refdesign_intel_en.pdf
https://dgway.com/products/IP/TOE40G-IP/dg_toe40gip_instruction_intel_en.pdf

https://dgway.com/products/IP/TOE40G-IP/dg_toe40gip_refdesign_intel_en.pdf
https://dgway.com/products/IP/TOE40G-IP/dg_toe40gip_instruction_intel_en.pdf

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 6

2 AFU Hardware overview

Figure 2-1 AFU block diagram

Figure 2-1 shows the logic details inside TOE40AFUTest module which is the AFU in the
reference design. AFU includes TOE40G-IP for transferring TCP/IP packet. To complete all layer
implementation, TOE10G-IP must connect to 40GbEMAC, PCS IP, and PMA IP which are
provided as Intel FPGA IP. User interface of TOE40G-IP connects to CCIUsrReg module for both
data interface and register interface. Register files of CCIUsrReg are split into three regions, i.e.
AFU CSR region, TOE40G-IP region, and internal test logic region (PattGen and PattVer).
Register files of CCIUsrReg are controlled by the software running on Xeon processor (through
64-bit MMIO interface). User can control the operation of TOE40G-IP, PattGen, and PattVer by
modifying the software on Xeon processor.

Otherwise, TOE40AFUTest module includes TOEMacFfIF module to be the interface logic
between TOE40G-IP and 40 GbE MAC. There are asynchronous FIFO inside TOEMacFfIF to
convert the clock domain between UserClk and 40 Gb EMAC clock. Data width of the FIFO is
equal to 256 bit. UserClk frequency is equal to 200 MHz which is enough to support 40 Gbps
transfer (200MHz x 256-bit = 51.2 Gbps). More details of each module inside the AFU are
described as follows.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 7

2.1 XLGMacHSSI

Figure 2-2 XLGMacHSSI

XLGMacHSSI is the modified 40 GbE MAC IP core to include only EMAC IP and PCS IP. PMA
is included in HSSI instead. The interfaces for connecting with HSSI are PR management,
Reset and status, and PCS data.

PR Management interface (prmgmt) of HSSI is connected to PHY management which is
designed as the HDL code inside “XLGMacHSSI.vhd”. “XLGMacHSSI.vhd” is modified from
“eth_e2e_e40.v” in 40GbE AFU design example to allow the port configuration by the internal
logic only, not CPU. The PHY management logic is run under csr_clk which is free running
clock at 100 MHz frequency.

The Reset and Status interface is controlled by PHY Reset controller logic which is
implemented within 40GbE MAC module.

The data interface between PCS PHY data interface and PMA data interface is the unified
data interface transmit and receive data ports. 40GBASE-SR4 mode uses 4 lanes of the
transceiver, so the 160-bit data interface is split to four segments of 40-bit PCS PHY data to
interface each transceiver lane. 40-bit PCS PHY data is appended by 88 bits zero data, so
one lane of the HSSI interface has 128 bit data (40-bit PCS PHY data are the lower bits and
88-bit zero data are the upper bits). The control port of the unified data interface is not utilized.
The transmit data port is run under tx_clk_312 while the receive data port is run under
rx_clk_312.

More details of Low latency 40G Ethernet IP Core are described in following link.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_ll_40gbe
.pdf

2.2 TOE40G-IP

TOE40G-IP implements TCP/IP stack and offload engine. User interface consists of control
signals and data signals. Control and status signals are accessed through register interface.
Data signals are accessed through FIFO interface. More details are described in datasheet.
https://dgway.com/products/IP/TOE40G-IP/dg_toe40gip_data_sheet_intel_en.pdf

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_ll_40gbe.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_ll_40gbe.pdf
https://dgway.com/products/IP/TOE40G-IP/dg_toe40gip_data_sheet_intel_en.pdf

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 8

2.3 TOEMacFfIF

Figure 2-3 TOEMacFfIF block diagram

This module is designed to be the adapter logic connecting between TOE40G-IP and 40G
Ethernet MAC. There are three clock domains in this module, i.e. Clk which is synchronous to
TOE40G-IP, PhyMacTxClk which is synchronous to Tx interface of 40G EMAC, and
PhyMacRxClk which is synchronous to Rx interface of 40G EMAC. Tx and Rx interface of
TOE40G-IP is FIFO interface while 40G EMAC interface is Avalon-stream. So, the logic
inside TOEMacFfIF is designed to convert interface type and support clock-crossing domain.

The logics to control transmit path and receive path are run independently, i.e. Tx Engine and
Rx Engine. Both engines include asynchronous FIFOs (TxFIFO and RxFIFO) to convert
Tx/Rx packet from one clock domain to another clock domain. FIFO size is 512x258-bit which
is much enough to store 9K byte packet (maximum TCP packet size supported on 40G
Ethernet card). More details of each engine are described as follows.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 9

2.3.1 Tx Engine

Figure 2-4 Tx Engine logic

On the left side, data of Tx interface from TOE10G-IP is stored to TxFIFO within Tx Engine.
The logic for monitoring Tx data interface to count the packet storing in TxFIFO is designed as
shown in the left side. “End packet detection” generates pulse signal to count the packet after
end of packet is detected. “Write Packet counter” is the packet counter. Because
TxLastEmpty signal from TOE40G-IP can be equal to two values, i.e. 0x04 and 0x0A, only bit
3 of TxLastEmpty signal is stored to TxFIFO for optimizing resource.

On the right side, the packet counter value is forwarded from Clk domain to PhyMacTxClk
domain. Read interface of TxFIFO is controlled by Tx state machine. When one packet is
stored to TxFIFO, Tx state machine will forward that packet from TxFIFO to 40G EMAC
following Avalon-stream standard. Similar to the Write side, there is a packet counter
designed to count the packet reading from TxFIFO. The remaining packet (rRemainPacCnt)
is calculated by total write packets (rMacWrPacCnt) – total read packets (rMacRdPacCnt).
When rRemainPacCnt is more than or equal to 1, Tx State machine starts the packet
forwarding operation.

The timing diagram of Tx Engine to read data from TxFIFO and send the data to Avalon-ST
interface is shown in Figure 2-5.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 10

Figure 2-5 Tx Engine timing diagram

1) When at least one packet is available in TxFIFO (rRemainPacCnt is not equal to 0) and

TxFfEmpty is equal to ‘0’ (Read interface of TxFIFO is ready), rTxState forwards one
packet from TxFIFO to 40G EMAC by changing state from stIdle to stUpdatePac.

2) stUpdatePac is run only one clock cycle to decrease rRemainPacCnt signal. TxFfRdEn is
asserted to ‘1’ at the same time. TxFIFO is Show-ahead type, so TxFfRdData is valid at
the same clock as TxFfRdEn asserted to ‘1’.

3) In the next clock, TxState changes to stTrans and the 1st data is transferred to Avalon-ST
interface (PhyMacTxSOP=’1’ and PhyMacTxValid=’1’). PhyMacTxData is latched from
TxFfRdData when TxFfRdEn is asserted to ‘1’. PhyMacTxData does not change when
TxFfRdEn is de-asserted to ‘0’.

4) After PhyMacTxReady is asserted to ‘1’ to get the 1st data, PhyMacTxSOP is de-asserted
to ‘0’.

5) Total remaining data counter is decreased when the start of frame is transmitted.
6) In stTrans, TxFfRdEn is asserted to ‘1’ following PhyMacTxReady signal, except the end

of frame.
7) State changes to stIdle after end-of-frame is transmitted (PhyMacTxEOP=’1’ and

PhyMacTxValid=’1’). PhyMacTxValid is de-asserted to ‘0’ to wait the next packet
processing.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 11

2.3.2 Rx Engine

Figure 2-6 Rx Engine logic

Before storing the received packet from Avalon-ST interface to RxFIFO, Rx state machine
must check free space of RxFIFO by monitoring RxFfWrCnt firstly. If free space is more than
9 Kbyte, the received packet will be forwarded to RxFIFO. Otherwise, the received packet is
rejected. The timing diagram of Rx Engine is shown in Figure 2-7.

Figure 2-7 Timing diagram when RxFIFO is ready

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 12

1) The new packet from Avalon-ST is stored to RxFIFO when at least 9 Kbyte is free in the

FIFO, monitored by comparing RxFfWrCnt with 224 ((511 – 224) x 32 = 9184 byte). If
RxFfWrCnt is less than 224, Rx state machine will change to stTrans to store the new
packet to RxFIFO.

2) RxFfWrEn and RxFfWrData are 1-clock cycle delayed from PhyMacRxValid and
PhyMacRxData respectively.

3) When end of packet is found (PhyMacRxValid=’1’ and PhyMacRxEOP=’1’), Rx state
machine will change to stIdle.

The example of timing diagram when the new packet is received but the FIFO is full is shown
in Figure 2-8.

Figure 2-8 Timing diagram when RxFIFO is not ready

1) When the new packet is received but RxFfWrCnt is more than or equal to 224, Rx state

machine will change to stFlush.
2) In stFlush, RxFfWrEn is de-asserted to ‘0’ to block new data storing to RxFIFO until end of

packet is found (PhyMacRxEOP=’1’ and PhyMacRxValid=’1’).
3) Rx state machine returns to stIdle to wait the new packet.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 13

2.4 CCI2Reg

Figure 2-9 CCIUserReg block diagram

The logic inside CCIUsrReg could be split into three parts, i.e. Register, Pattern generator
(PattGen), and Pattern verification (PattVer). Register block converts MMIO which is 64-bit
interface to be 32-bit interface for internal usage and TOE40G-IP register interface. Pattern
generator block is designed to send 256-bit test data to TOE40G-IP following FIFO interface
standard. Pattern verification block is designed to read and verify 256-bit data from
TOE40G-IP following FIFO interface standard. More details of each block are described as
follows.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 14

2.4.1 Register

As shown in Figure 2-9, register map of CCI-P interface is split into three areas, i.e.
mandatory AFU CSR (0x0000-0x00FF), TOE40G-IP (0x0100-0x01FF), and internal signals
(0x1000-0x10FF).

Address signal of CCI-P for MMIO access is based on 32-bit register, but data bus size of
MMIO for write and read register is 64-bit register. The address forwarding from MMIO to
TOE40G-IP, PattGen, and PattVer is designed to align 64-bit unit. Since data bus size of
TOE40G-IP registers and internal registers for controlling PattGen and PattVer is 32-bit, only
the lower 32 bits of MMIO write data is applied. The upper 32 bits of MMIO write data is
ignored.

AFU CSR is mandatory register which must be implemented in AFU. It is register set for read
only. Constant value and AFU ID are returned to MMIO as 64-bit unit, as shown in Figure 2-10.
The software uses the AFU_ID to ensure that the correct AFU is matched.

Figure 2-10 Mandatory AFU CSRs (captured from MNL-1092 CCIP Reference manual)

Similar to write access, the read data returned from TOE40G-IP registers and internal
registers of PattGen and PattVer is 32-bit unit. So, only lower 32 bits of read data is assigned
when MMIO accesses TOE40G-IP area and internal register area.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 15

Signal lists of CCI-P interface for MMIO access are shown in Table 2-1 and timing diagram of
CCI-P interface for MMIO access is shown in Figure 2-11.

Table 2-1 CCI-P for MMIO access mapping to CCIUsrReg
CCIUserReg signal name Direction CCI-P interface signal name

RegAddress[15:0] Input t_if_ccip_Rx.c0.hdr.address[15:0]

RegWrData[31:0] Input t_if_ccip_Rx.c0.data[31:0]

RegWrEn Input t_if_ccip_Rx.c0.mmioWrValid

RegRdReq Input t_if_ccip_Rx.c0.mmioRdValid

RegRdValid output t_if_ccip_Tx.c2.mmioRdValid

RegRdData[63:0] output t_if_ccip_Tx.c2.data[63:0]

Figure 2-11 CCI-P interface for MMIO access timing diagram

To write register, timing diagram of MMIO access is same as RAM interface. RegAddr and
RegWrData must be valid when RegWrEn is asserted to ‘1’. The upper bit of RegAddr is
decoded by Address decoder to assert write enable for TOE40G-IP or the internal signals of
CCIUsrReg. The lower 32-bit data is forwarded to 32-bit write data for TOE40G-IP and the
internal signals.

To read register, CCI-P interface asserts RegRdReq=’1’ with the valid value on RegAddr. The
upper bit of RegAddr is decoded to select read data source from AFU CSR, TOE40G-IP, or
the internal signals. Since there are many registers which are mapped to read access, two
pipeline registers are designed in read data path. So, RegRdValid is created by adding two
Flip-Flops to RegRdReq. The details of logic design in Register block are shown in Figure
2-12.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 16

Figure 2-12 Register block

Data bus size of CCI-P is 64 bit, but the address is based on 32 bit. The address and data
interface of TOE40G-IP is based on 32 bit. For simple logic design to convert CCI-P register
signals to be TOE40G-IP register signals, CCI-P register address map for TOE40G-IP area is
aligned to 64 bit or 8 byte. TCPRegAddr[3:0] is fed by UserRegAddr[4:1]. TCPRegWrEn is
asserted to ‘1’ when UserRegWrEn=’1’ and the upper bit of UserRegAddr is equal to
TOE40G-IP area.

Similar to TOE40G-IP, the internal signals for PattGen and PattVer are based on 64 bit
address. PattGen parameters, programmed by the software, are rSetTxSize (total transfer
size) and rTxTrnEn (enable signal to start PattGen). For PattVer, the software sets rVerifyEn
flag to enable or disable the data comparator inside PattVer.

PattGen and PattVer status signals such as rTotalTxCnt (current Tx data size), rTotalRxCnt
(current Rx data size), and rFail (verification failed flag) are fed to multiplexer to return read
value to CCI-P. Read data bus size from TOE40G-IP, PattGen, and PattVer is 32 bit while
AFU CSR data bus size is 64 bit.

Table 2-2 shows CCIUsrReg register map on CCI-P interface by using MMIO access.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 17

Table 2-2 CCIUsrReg register map on MMIO access

Byte Address Register Name Description

Wr/Rd (Label in the “toe40gtest.c”)

BA+0x0000 – BA+0x00FF: Mandatory AFU CSRs Register Area (Refer to MNL-1092 for more details)

0x0000 DEV_FEATURE_HDR [63:0] Feature Header CSR

0x0008 AFU_ID_L [63:0] Lower 64 bits of the AFU_ID GUID

0x0010 AFU_ID_H [63:0] Upper 64 bits of the AFU_ID GUID

0x0018 DFH_RSVD0 [63:0] Reserved

0x0020 DFH_RSVD1 [63:0] Reserved

BA+0x0100 – BA+0x01FF: TOE40G-IP Register Area

More details of each register are described in Table2 of TOE40G-IP datasheet.

0x0100 TOE40_RST_REG [31:0] Mapped to RST register within TOE40G-IP

0x0108 TOE40_CMD_REG [31:0] Mapped to CMD register within TOE40G-IP

0x0110 TOE40_SML_REG [31:0] Mapped to SML register within TOE40G-IP

0x0118 TOE40_SMH_REG [31:0] Mapped to SMH register within TOE40G-IP

0x0120 TOE40_DIP_REG [31:0] Mapped to DIP register within TOE40G-IP

0x0128 TOE40_SIP_REG [31:0] Mapped to SIP register within TOE40G-IP

0x0130 TOE40_DPN_REG [31:0] Mapped to DPN register within TOE40G-IP

0x0138 TOE40_SPN_REG [31:0] Mapped to SPN register within TOE40G-IP

0x0140 TOE40_TDL_REG [31:0] Mapped to TDL register within TOE40G-IP

0x0148 TOE40_TMO_REG [31:0] Mapped to TMO register within TOE40G-IP

0x0150 TOE40_PKL_REG [31:0] Mapped to PKL register within TOE40G-IP

0x0158 TOE40_PSH_REG [31:0] Mapped to PSH register within TOE40G-IP

0x0160 TOE40_WIN_REG [31:0] Mapped to WIN register within TOE40G-IP

0x0168 TOE40_ETL_REG [31:0] Mapped to ETL register within TOE40G-IP

0x0170 TOE40_SRV_REG [31:0] Mapped to SRV register within TOE40G-IP

0x0178 TOE40_VER_REG [31:0] Mapped to VER register within TOE40G-IP

BA+0x1000 – BA+0x10FF: Internal signals of PattGen and PattVer

0x1000 Total transmit length Wr [31:0] – Set total size of PattGen in 256-bit unit. Valid from 1-0xFFFFFFFF.

Rd [31:0] – Completed size of PattGen in 256-bit unit. The value is cleared to

0 when USER_CMD_REG is written by user.

Wr/Rd (USER_TXLEN_REG)

0x1008 User Command Wr

[0] – Start PattGen. Set ‘1’ to start PattGen operation.

This bit is auto-cleared to ‘0’ after end of total transfer.

[1] – Enable data verification

(‘0’: Enable data verification, ‘1’: Disable data verification)

Rd

[0] – Busy flag of PattGen (‘0’: Idle, ‘1’: PattGen is busy)

[1] – Data verification error (‘0’: Normal, ‘1’: Error)

This bit is auto-cleared when user starts new operation or reset.

[2] – Mapped to ConnOn signal of TOE40G-IP

Wr/Rd (USER_CMD_REG)

0x1010 User Reset Wr

[0] – Reset signal. Set ‘1’ to reset the logic. This bit is auto-cleared to ‘0’.

[8] – Set ‘1’ to clear TimerInt latch value

Rd

[8] – Latch value of TimerInt output from IP (‘0’: Normal, ‘1’: TimerInt=’1’ is

detected). This flag can be cleared by system reset condition or setting

USER_RST_REG[8]=’1’.

[16] – 40G EMAC Linkup (‘0’: Link is down, ‘1’: Link is up)

Wr/Rd (USER_RST_REG)

0x1018 FIFO status Rd [4:0]: Mapped to TCPRxFfLastRdCnt[4:0] signal of TOE40G-IP

[15:5]: Mapped to TCPRxFfRdCnt[10:0] signal of TOE40G-IP

[24]: Mapped to TCPTxFfFull signal of TOE40G-IP

Rd (USER_FFSTS_REG)

0x1020 Total Receive length Rd [31:0] – Completed size of PattVer in 256-bit unit. The value is cleared to 0

when USER_CMD_REG is written by user. Rd (TRN_RXLEN_REG)

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 18

2.4.2 Pattern Generator

Figure 2-13 PattGen block

Figure 2-14 PattGen Timing diagram

PattGen is designed to generate test data to TOE40G-IP. rTxTrnEn is asserted to ‘1’ when
USER_CMD_REG[0] is set to ‘1’. When rTxTrnEn is ‘1’, TCPTxFfWrEn is controlled by
TCPTxFfFull. TCPTxFfWrEn is de-asserted to ‘0’ when TCPTxFfFull is ‘1’. rTotalTxCnt is the
data counter to check total data sending to TOE40G-IP. rTotalTxCnt is also used to generate
32-bit increment data to TCPTxFfWrData signal. rTxTrnEn is de-asserted to ‘0’ when finishing
to transfer total data (total data is set by rSetTxSize).

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 19

2.4.3 Pattern Verification

Figure 2-15 PattVer block

Figure 2-16 PattVer Timing diagram

PattVer is designed to read test data from TOE40G-IP with or without data verification,
depending on rVerifyEn flag. When rVerifyEn is set to ‘1’, data comparison is enabled to
compare read data (TCPRxFfRdData) to the expected pattern (wExpPatt). If data verification
is failed, rFail will be asserted to ‘1’. TCPRxFfRdEn is designed by using NOT logic of
TCPRxFfRdEmpty. After TCPRxFfRdEn is asserted to ‘1’, TCPRxFfRdData is valid for data
comparison in the next clock. rFfRdEn which is one clock latency of TCPRxFfRdEn is applied
to be counter enable of rTotalRxCnt to count total transfer size. rTotalRxCnt is also used to
generate wExpPatt (expected data to compare with TCPRxFfRdData).

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 20

3 User Application (Intel PAC)

3.1 Overview

After finishing AFU hardware design, configuration is built by OPAE SDK as shown in
following diagram.

Figure 3-1 OPAE SDK Design Flow for AFU development (captured from UG-20169)

The output file after finishing hardware implementation is gbs file (green bit stream) which is
bit stream for running partial configuration by the OPAE software platform. More details to
develop AFUs with the OPAE SDK are described in UG-20169.
https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.
html

https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html
https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 21

On software platform, the OPAE C library (libopae-c) is provided as a lightweight user-space
library. The OPAE C library is built on the driver stack and provides access to the FPGA
resources as a set of features for software programs running on the host. These features
include the logic preconfigured on the FPGA and functions to reconfigure the FPGA. More
details of OPAE are described in following link.
https://opae.github.io/1.3.0/index.html

Figure 3-2 Software on Intel PAC PC

The basic application flow is shown in the right side of Figure 3-2. Before starting AFU, AFU
initialization is run by calling following function.
1) Call fpgaEnumerate function to search AFU.
2) Call fpgaOpen function to acquire ownership of an AFU. A token is returned from

fpgaEnumerate in the previous step.
3) Call fpgaMapMMIO to map the register file of AFU into the process’s virtual memory

space.

After that, start signal is sent to AFU for starting acceleration function. The 1st step of
TOE40G-IP AFU is monitoring Ethernet linkup status. More details of TOE40G-IP software
are described in the next topic.

https://opae.github.io/1.3.0/index.html

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 22

3.2 TOE40G-IP Test software

The software sequence of TOE40G-IP running on Intel PAC is same as TOE40G-IP reference
design on other FPGA boards. The different point is the function to display message and
receive parameter from user. After finishing MMIO mapping, 40G Ethernet link up status
(USER_RST_REG[16]) is polling. The processor waits until link up is found. Next, welcome
message is displayed and user selects operation mode of TOE40G-IP to be client or server
mode.

To initialize as client mode, TOE40G-IP sends ARP request to get the MAC address from the
destination device. For server mode, TOE40G-IP waits ARP request to decode MAC address
and returns ARP reply to complete initialization process.

If test environment is setup by using two FPGA boards, the operation mode of TOE40G-IP
must be different (one is client and another is server). To run with Test PC, it is recommended
to set Intel PAC as client mode. When Test PC receives ARP request, Test PC always returns
ARP reply. It is not simple to force PC sending ARP request to Intel PAC.

The software has two default parameters for each operation mode. Figure 3-3 shows the
example of the initialization sequence after system boot-up.

Figure 3-3 Example of initialization sequence in client mode on Linux terminal

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 23

There are four steps to complete initialization sequence as follows.

1) The software receives the operation mode from user and displays default parameters of
selected mode on the Linux terminal.

2) User inputs ‘x’ to complete initialization sequence by using default parameters or inputs
other keys to change some parameters. To change some parameters, please follow the
step of Reset IP menu which is described in topic 3.2.2.

3) The Intel PAC host waits until TOE40G-IP finishing initialization sequence (monitoring
TOE40_CMD_REG[0]=‘0’).

4) Main menu is displayed. There are five test operations for user selection. More details of
each menu are described as follows.

3.2.1 Display IP parameters

This menu is used to show current value of TOE40G-IP parameters such as operation mode,
source MAC address, destination IP address, source IP address, destination port, and source
port. The sequence to display the parameters is as follows.

1) Read network parameter from each variable in the software.
2) Print out each variable.

3.2.2 Reset IP parameters

This menu is used to change TOE40G-IP parameters such as IP address and source port
number. After setting the updated parameter to TOE40G-IP register, the Intel PAC host resets
the IP to re-initialize by using new parameters. Finally, the Intel PAC host monitors busy flag to
wait until the initialization is completed. The sequence to reset IP is as follows.

1) Display the current value of parameters on the Linux terminal.
2) Receive the new input parameters from user and check the input value whether valid or

not. If which input is invalid, the value of that input will not change.
3) Force reset to IP by setting TOE40_RST_REG[0]=’1’.
4) Set all parameters to TOE40G-IP register such as TOE40_SML_REG and

TOE40_DIP_REG.
5) De-assert IP reset by setting TOE40_RESET_REG[0]=’0’.
6) Clear PattGen and PattVer logic by sending reset to user logic (USER_RST_REG[0]=’1’).
7) Monitor IP busy flag (TOE40_CMD_REG[0]) until the initialization sequence is finished

(busy flag is de-asserted to ‘0’).

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 24

3.2.3 Send data test

Three user inputs are required, i.e. total transmit length, packet size, and connection mode.
The connection mode means active open for client operation or passive open for server
operation. The operation will be cancelled if the input is invalid.

During the test, 32-bit increment data is generated from the logic and sent to external device
which may be Test PC or FPGA. Data is verified by the external device (Test application on
Test PC or verification module on FPGA). The operation is finished when total data are
transferred from Intel PAC to the external device. The sequence of this test is as follows.

1) Receive transfer size, packet size, and connection mode from user and verify that the
value is valid.

2) Set CCIUsrReg registers, i.e. transfer size (USER_TXLEN_REG), reset flag to clear initial
value of test pattern (USER_RST_REG[0]=’1’), and command register to start PattGen
(USER_CMD_REG=0). After that, PattGen in CCIUsrReg transmits data to TOE40G-IP.

3) Display the recommended parameter of test application running on Test PC.
4) Open connection following connection mode.

a. For active open, the Intel PAC host sets TOE40_CMD_REG=2 and monitors ConnOn
status (USER_CMD_REG[2]) until it is equal to ‘1’.

b. For passive open, the Intel PAC host waits until connection is opened by Test PC or
FPGA. ConnOn status (USER_CMD_REG[2]) is monitored until it is equal to ‘1’.

5) Set packet size to TOE40_PKL_REG and calculate total loops from total transfer size.
Maximum transfer size of each loop is 4 GB. The operation of each loop is as follows.
a. Set transfer size of this loop to TOE40_TDL_REG. The set value is equal to remaining

transfer size for the last loop or equal to 4 GB for the other loops.
b. Set send command (0x0) to TOE40_CMD_REG.
c. Wait until operation is completed by monitoring busy flag (TOE40_CMD_REG[0]). The

operation is finished when busy flag changes to ‘0’. During monitoring busy flag, the
Intel PAC host reads current transfer size from user logic (USER_TXLEN_REG and
USER_RXLEN_REG) and displays the results on the Linux terminal every second.

6) Set close connection command (0x3) to TOE40_CMD_REG.
7) Calculate performance and show test result on the Linux terminal.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 25

3.2.4 Receive data test

User sets three parameters, i.e. total received size, data verification mode (enable or disable),
and connection mode (active open for client operation or passive open for server operation).
The operation will be cancelled if the input is invalid.

During the test, 32-bit increment data is generated to verify the received data from the
external device (Test PC or FPGA) when data verification mode is enabled. The sequence of
this test is as follows.

1) Receive total transfer size, data verification mode, and connection mode from user input.

Verify that all inputs are valid.
2) Set CCIUsrReg registers, i.e. reset flag to clear initial value of test pattern

(USER_RST_REG[0]=’1’) and data verification mode (USER_CMD_REG[1]=’0’ or ‘1’).
3) Display the recommended parameter of the software (same as Step 3 of Send data test).
4) Open connection following connection mode (same as Step 4 of Send data test).
5) Wait until connection is closed by the external device (Test PC or FPGA). The close status

is monitored by reading Connon status (USER_CMD_REG[2]) which must be equal to’0’.
During monitoring ConnOn, the Intel PAC host reads current transfer size from user logic
(USER_TXLEN_REG and USER_RXLEN_REG) and displays the results on the Linux
terminal every second.

6) Read total received length of user logic (USER_RXLEN_REG) and wait until read value is
equal to total size set from user. After total data is received, the failure flag to show
verification result is read (USER_CMD_REG[1]=‘0’ when error is not found). If the error is
detected, error message will be displayed.

7) Calculate performance and show test result on the Linux terminal.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 26

3.2.5 Full duplex test

This menu is designed to run full duplex test by transferring data between Intel PAC and Test
PC or FPGA in both directions by using same port number at the same time. Four inputs are
received from user, i.e. total size for both directions, packet size for PattGen, data verification
mode for PattVer, and connection mode (active open/close for client operation or passive
open/close for server operation).

When running the test by using Test PC and Intel PAC, transfer size setting on Intel PAC must
be matched to the size setting on test application (tcp_client_txrx). Connection mode on Intel
PAC when running with Test PC must be set to server (passive operation).

The test runs in forever loop until user cancels operation. User inputs Ctrl+C to cancel the
operation when running with Test PC. If running with FPGA, user inputs some keys to the
terminal. The sequence of this test is as follows.

1) Receive total data size, packet size, data verification mode, and connection mode from

user and verify that the value is valid.
2) Display recommended parameter of test application running on Test PC.
3) Set CCIUsrReg registers, i.e. transfer size (USER_TXLEN_REG), reset flag to clear initial

value of test pattern (USER_RST_REG[0]=’1’), and command register to start PattGen
with data verification mode of PattVer (USER_CMD_REG=1 or 3).

4) Open connection following connection mode (same as Step 4 of Send data test).
5) Set TOE40G-IP registers, i.e. packet size (TOE40_PKL_REG=user input) and calculate

total transfer size in each loop. Maximum size of one loop is 4 GB. The operation of each
loop is as follows.

a. Set transfer size of this loop to TOE40_TDL_REG. Except the last loop, transfer size in
each loop is set to maximum size (4GB) which is also aligned to packet size. For the
last loop, transfer size is equal to the remaining size.

b. Set send command (0x0) to TOE40_CMD_REG.
c. Wait until send command is completed by monitoring busy flag (TOE40_CMD_REG[0]).

When the operation is finished, busy flag changes to ‘0’. During monitoring busy flag,
the Intel PAC host reads current transfer size from USER_TXLEN_REG and
USER_RXLEN_REG and displays the results on the terminal every second.

6) Close connection following the connection mode.
a. For active close, the Intel PAC host waits until transfer size is equal to set value. Then,

set USER_CMD_REG=3 to close connection. Next, the Intel PAC host waits until
connection is closed by monitoring ConnOn (USER_CMD_REG[2])=’0’.

b. For passive close, the Intel PAC host waits until connection is closed by the external
device (Test PC or FPGA). ConnOn (USER_CMD_REG[2]) is monitored until it is
equal to ’0’.

7) Check received result and error status (same as Step 6 of Receive data test).
8) Calculate performance and show test result on the Linux terminal. Go back to step 3 to run

the test in forever loop.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 27

3.3 Function list in User application

This topic describes the function list to run TOE40G-IP operation. The initialization sequence
before starting AFU is not described in this topic.

void exec_port(unsigned int port_ctl, unsigned int mode_active)

Parameters port_ctl: 1-Open port, 0-Close port
mode_active: 1-Active open/close, 0-Passive open/close

Return value None

Description For active mode, write TOE40_CMD_REG to open or close connection.
After that, call read_conon function to monitor connection status until it
changes from ON to OFF or OFF to ON, depending on port_ctl mode.

void init_param(void)

Parameters None

Return value None

Description Set network parameters to TOE40G-IP register from global parameters.
After reset is de-asserted, it waits until TOE40G-IP busy flag is
de-asserted to ‘0’.

int input_param(void)

Parameters None

Return value 0: Valid input, -1: Invalid input

Description Receive network parameters from user, i.e. mode, window threshold,
FPGA MAC address, FPGA IP address, FPGA port number, Target IP
address, and Target port number. If the input is valid, the parameters will
be updated. Otherwise, same values are used. After receiving all
parameters, the current value of each parameter is displayed.

Unsigned int read_conon(void)

Parameters None

Return value 0: Connection is OFF, 1: Connection is ON.

Description Read value from USER_CMD_CONNON register and return only bit2
value to show connection status.

void show_cursize(void)

Parameters None

Return value None

Description Read USER_TXLEN_REG and USER_RXLEN_REG, and then display
in Byte, KByte, or MByte unit

void show_param(void)

Parameters None

Return value None

Description Display current value of network parameters setting to TOE40G-IP such
as IP address, MAC address, and port number.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 28

void show_result(void)

Parameters None

Return value None

Description Read USER_TXLEN_REG and USER_RXLEN_REG to display total
size. Read global parameters (timer_val_end and timer_val_start) and
calculate total time usage to display in usec, msec, or sec unit. Finally,
transfer performance is calculated and displayed on MB/s unit.

int toe40g_recv_test(void)

Parameters None

Return value 0: Operation is successful
-1: Receive invalid input or error is found

Description Run Receive data test following described in topic 3.2.4

int toe40g_send_test(void)

Parameters None

Return value 0: Operation is successful
-1: Receive invalid input or error is found

Description Run Send data test following described in topic 3.2.3

int toe40g_txrx_test(void)

Parameters None

Return value 0: Operation is successful
-1: Receive invalid input or error is found

Description Run Full duplex test following described in topic 3.2.5

void wait_ethlink(void)

Parameters None

Return value None

Description Read USER_RST_REG[16] and wait until linkup status is found

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 29

4 TCP Test Software

Two test applications are designed to transfer TCP packets with Intel PAC, i.e. “tcpdatatest” for
half-duplex test and “tcp_client_txrx” for full-duplex test. The test application is run on Linux OS. In
the reference design, we run the application by using the same PC which Intel PAC installed.
More details of the test software are described as follows.

4.1 “tcpdatatest” for half duplex test

Figure 4-1 “tcpdatatest” application usage

“tcpdatatest” is designed to send or receive TCP data through Ethernet in server or client
mode. In this demo, only client mode is applied. Six parameters are necessary as follows.
1) Mode : -c – The software runs in client mode to communicate with Intel PAC which is run

in server mode
2) Dir : -t – transmit mode (software sends data to Intel PAC)

 -r – receive mode (software receives data from Intel PAC)
3) ServerIP: IP address of Intel PAC which runs as server mode (default is 192.168.7.42)
4) ServerPort: Port number of Intel PAC which runs as server mode (default is 4000)
5) ByteLen: Total transfer size in byte unit when running in transmit mode. The parameter is

ignored when running in receive mode.
6) Pattern :

0 – Generate dummy data in transmit mode or disable data verification in receive mode.
1 – Generate increment data in transmit mode or enable data verification in receive mode.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 30

Transmit data mode
Following is the sequence when test application runs in transmit mode.
1) Get parameters from the user and verify the input that is in the valid range.
2) Create socket and set socket options.
3) Create the new connection by using server IP address and server port number.
4) Allocate 128 Kbyte memory to be send buffer.
5) Generate increment test pattern to send buffer when test pattern is enabled. Skip this step

if dummy pattern is selected.
6) Send data out and read total sent data from the function.
7) Calculate remaining transfer size.
8) Print total transfer size every second.
9) Run step 5) – 7) in the loop until the remaining transfer size is 0.
10) Calculate total performance and print the result on the console.
11) Close socket.

Receive data mode
Following is the sequence when test application runs in receive mode.

1) Follow the same step as Transmit data mode in step 1) – 3).
2) Allocate 128 Kbyte memory to be received buffer.
3) Read data from received buffer and increase total received size.
4) If verification is enabled, data will be verified with increment pattern. Error message is

printed out when data is not correct. This step will be skipped if data verification is disabled.
5) Print total transfer size every second.
6) Run step 3) – 5) in the loop until the connection is closed.
7) Calculate total performance and print the result on the console.
8) Close socket.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 31

4.2 “tcp_client_txrx” for full duplex test

Figure 4-2 “tcp_client_txrx” application usage

“tcp_client_txrx” is designed to send and receive TCP data at the same time through Ethernet
by using same port number. The application is run in client mode and the user needs to input
the network parameters of the server (TOE40G-IP) when running the application. As shown in
Figure 4-2, there are four parameters to run the application, i.e.
1) ServerIP: IP address of Intel PAC
2) ServerPort: Port number of Intel PAC
3) ByteLen: Total transfer size in byte unit. This is total size to transmit and receive data.
4) Verification:

0 – Generate dummy data for sending function and disable data verification for receiving
function. This mode is used to check the best performance of full-duplex transfer.
1 – Generate increment data for sending function and enable data verification for receiving
function.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 32

The sequence of test application is as follows.

(1) Get parameters from the user and verify the input that is in the valid range.
(2) Create socket and set socket options.
(3) Create the new connection by using server IP address and server port number.
(4) Allocate 98 KB memory for send and receive buffer.
(5) Create thread to write and read data and wait until both threads finishing the operation.

a. In the thread to send data, it generates the increment test pattern when verification is
enabled or skips to fill the pattern when verification is disabled. After that, the thread
sends data out.

b. In the thread to read/verify data, the buffer is read and then the remaining data is
calculated. The read data is verified by the increment pattern when verification is
enabled. The error message is printed out when data is not correct. Otherwise, the
verification is skipped.

(6) Print total transfer size of both directions every second.
(7) Run step 5) – 6) until total sending data and total receiving data are equal to ByteLen

(input from user).
(8) Print total size and performance and close socket.
(9) Sleep for 1 second to wait the hardware complete the current test loop.
(10) Run step 3) – 10) in forever loop. If verification is failed, the application will quit.

dg_toe40gip_intelpac_refdesign.doc

4-Jul-19 Page 33

5 Revision History

Revision Date Description

1.0 4-Jul-19 Initial version release

