

Intel版UDP10G-IPコアのご紹介

Ver1.1J

純ロジックのIPコアで超高速UDP実装

2019/3/26 Design Gateway Page 1

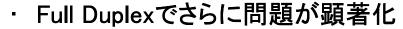
アジェンダ

- · UDPプロトコルの特徴や実装の課題点
- · UDP10G-IPコアの概要
- ・コアの動作
 - 初期化
 - 高速送信
 - 高速受信
- ユーザI/F・バッファ容量のパラメタライズ
- ・ リファレンス・デザイン
- · コア消費リソース・実機パフォーマンス
- アプリケーション例

UDPプロトコルの特徴

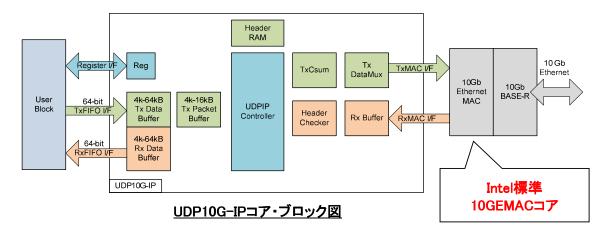
- · 長所
 - 最小のオーバーヘッドにより高速かつ低レイテンシ
 - 1対複数のマルチ/ブロード・キャストが可能
 - 動画配信などリアルタイム重視のアプリに最適

- 短所
 - 受信確認や再送がないので信頼性が保証されない
 - 信頼性維持のためにはアプリ側で対応する必要がある


2019/3/26 Design Gateway Page 3

CPUでのUDP実装課題

- パフォーマンスやレイテンシに問題
 - チェックサム計算やヘッダ付加処理がファームで必要
 - CPUリソースを消費し他のタスクへ影響
 - ファーム処理なので転送性能が安定しない


- 同時送受信の場合CPUが時分割で処理する必要がある
- 送受信同時ファーム処理により転送性能が更に悪化
- リアルタイム性が必要なアプリには致命的
 - ⇒UDP10G-IPがこの問題を解決します!

UDP10G-IPコアの概要

- ・ 完全ハード・ワイヤード化した純ロジック・コア
- ・ ユーザ回路とIntel製10GEMACコアの間に挿入
- ・ Full Duplex(送受信同時)通信をサポート

2019/3/26 Design Gateway Page 5

UDP10G-IPコアの特長1

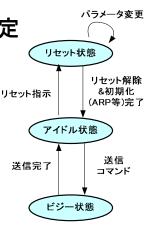
- · UDP送受信処理を完全ロジック・ハードウエア化
 - CPUなしでの組込みシステム実装が可能
 - CPUシステムではCPU負荷がゼロ

- ・ 送信のみ/受信のみ/同時送受信を高速転送
 - 1200MByte/secを超える実パフォーマンス

- ・ 転送データの信頼性が維持できる
 - 送信時:チェックサムを自動計算・ヘッダに付加
 - 受信時:チェックサム結果の不一致でパケット自動破棄

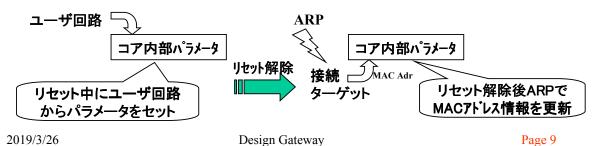
UDP10G-IPコアの特長2

- ・ データバッファ容量を選択可能
 - FPGAメモリ・リソースとパフォーマンスからユーザが選択
- · IPフラグメント受信に対応
 - 正しい順番のIPフラグメント・パケット受信が可能
- ・ 実機動作リファレンス・デザイン
 - Intel評価ボードで動作するプロジェクト
 - 購入前に実動作や実パフォーマンスの評価を検証可能
 - 製品のリファレンスはコア以外の全回路をソースで添付
- ・ マルチキャスト/ブロードキャスト送信に対応可能
 - カスタマイズにより複数ターゲットに同時送信


2019/3/26 Design Gateway Page 7

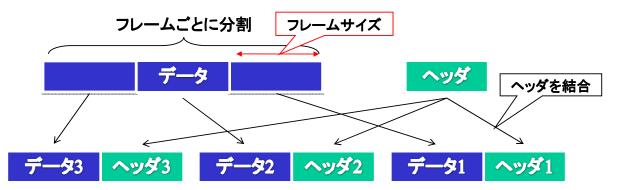
UDP10G-IPコアの動作概要

- ・ リセット状態でパラメータ(IP&MACアドレス等)を設定
- ・ リセット解除で初期化(ARP等)を実行
- ・ 初期化完了でアイドル(コマンド待ち)状態
- ・ ユーザ・コマンドにより送信動作
- ・ 受信は常時可能 (設定パラメータに合致するパケットは常時受信)
- 送信と受信は独立して動作(同時送受信可)
- パラメータ変更はリセット状態で実施 (転送長/パケット長はビジー状態以外で変更可)


コアの状態遷移図

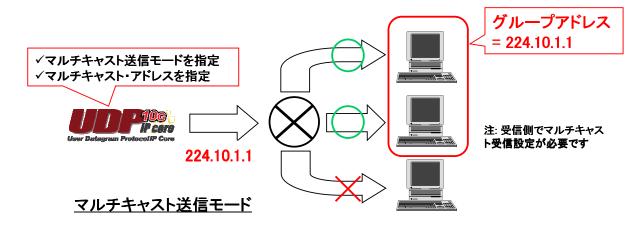
初期化動作

- ・ パラメータの初期値設定
 - コアのリセット維持中にユーザ回路より設定
 - IPおよびMACアドレス・ポート番号を指定
 - 設定を完了するとリセットを解除
- ・ リセット解除後ARP実行で相手側MACアドレス取得
 - クライアントの場合接続ターゲットに対してARPを発行
 - サーバーの場合ARP受信を待機



高速送信

- ・送信パケットの生成
 - ユーザ回路は送信データをFIFO I/Fで書込み
 - 送信データをフレームサイズで分割
 - チェックサムを自動計算しヘッダへ付加
 - ヘッダと送信データを結合し10GEMACへ出力


2019/3/26 Design Gateway Page 10

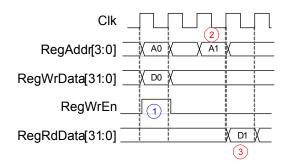
マルチ/ブロードキャスト高速送信(オプション)

- カスタマイズでマルチ/ブロードキャスト送信をサポート
 - コア初期化時のARP自動実行を抑制
 - マルチ(ブロード)キャストIP/MACアドレスをコアに設定

2019/3/26 Design Gateway Page 11

高速受信

- ・ 受信ヘッダのフィルタリング
 - MACヘッダ、IPヘッダ、UDPヘッダの全てを評価
 - 正しい順番のIPフラグメント・パケットを受信
- ・ チェックサムの自動計算と評価
 - 受信パケットからチェックサムをコア内で自動計算
 - 計算結果と受信パケット内チェックサムを評価
 - 不一致の場合パケットを破棄(無視)

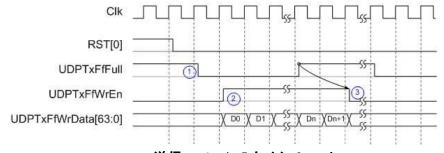


ユーザ・インターフェース(制御)

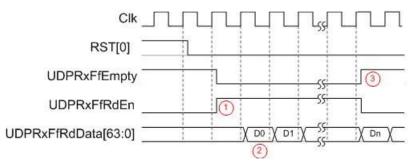
- レジスタI/F、送信FIFO I/F、受信FIFO I/Fの3種類
 - レジスタI/Fは初期パラメータの設定、送信命令
 - 送信データ・受信データ用I/Fは標準的なFIFO I/F

[レジスタの書込み] ①アドレスとデータを 設定しWrEnで書込み

[レジスタの読出し] ②アドレスを与えたる ③次クロックで有効 データが出力


レジスタI/Fのタイムチャート

2019/3/26 Design Gateway Page 13


ユーザ・インターフェース(データ)

[送信データの書込み] ①Fullでないことを確認 ②データをWrEnで書込み

③Fullになってから4クロック 以内にライト中断

送信FIFO I/Fのタイムチャート

[受信データの読み出し]

- ①非EmptyでRdEnにて読出し ②次のクロックでデータ出力
- ③Emptyではリード禁止

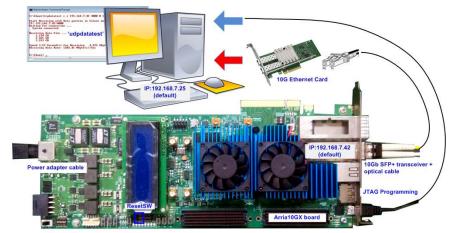
受信FIFO I/Fのタイムチャート

データ・バッファ容量の設定

- 3種類のデータ・バッファをパラメタライズで設定可能
 - ① 送信データ・バッファ: 4KByte~64KByte
 - ② 送信パケット・バッファ: 4KByte~16KByte
 - ③ 受信データ・バッファ: 4KByte~64KByte
- ・ リソースとパフォーマンスの最適点を調整できる

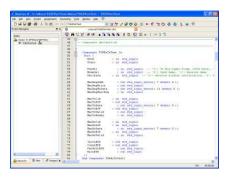
ジェネリック名	設定範囲	説明
TxBufBitWidth	9–13	送信データ・バッファ・サイズをアドレス・ビット幅で設定します。 例えば9の場合4Kバイト、13の場合64Kバイトとなります。
TxPacBitWidth	9–11	送信パケット・バッファ・サイズをアドレス・ビット幅で設定します。 例えば9の場合4Kバイト、11の場合16Kバイトとなります。
RxBufBitWidth	9–13	受信データ・バッファ・サイズをアドレス・ビット幅で設定します。 例えば9の場合4Kバイト、13の場合64Kバイトとなります。

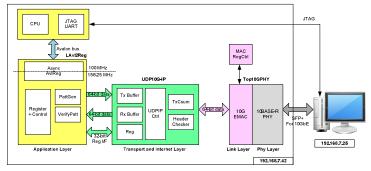
各データ・バッファはパラメタライズで設定できる


2019/3/26 Design Gateway Page 15

評価用SOFファイル

- · Intel各評価ボードで動作するsofファイル
 - PC-評価ボード間での送信/受信の実機評価
 - 転送パフォーマンス測定・データベリファイ確認


Intel評価ボードを使った実機検証環境



リファレンス・デザイン概要

- ・実機動作するQuartusデザイン・プロジェクト
 - 各デバイス・ファミリ標準のIntel評価ボードで実装
 - 評価用SOFファイルのプロジェクトをコア製品に添付
 - コア(ネットリスト)部以外の全回路をソースコードで提供

実動作するQuartus/Qsysプロジェクト

リファレンス・デザイン・ブロック図

2019/3/26 Design Gateway Page 17

リファレンスと実機評価による開発

- ・ リファレンス+評価ボードによる確実な開発
 - まず最初に製品添付のリファレンスで実機動作を確認
 - そこからユーザ製品に向け少しずつ編集
 - 編集ごとに実機動作をStep by Stepで確認
 - 問題があれば1ステップ前に戻るだけで動く状態にすぐ復帰できる

大きな後戻りがなく確実で短期間での製品開発が可能!

2019/3/26 Design Gateway Page 18

消費リソース

- コアの消費リソース
 - 送信データ・バッファ=64KByte、送信パケット・バッファ=16KByte、受信データ・バッファ=64KByteの最大設定時

Family	Example Device	Fmax (MHz)	ALMs	Registers	Block Memory bit
Arria10 GX	10AX115S2F45I1	156.25	1,327	1,979	1,179,648

UDP10G-IPコア単体コンパイル結果

メモリ消費量は送受信ともバッファを最大に設定した場合です。 バッファ容量を削減すれば内部メモリ消費リソースを節約できます。

2019/3/26 Design Gateway Page 19

転送パフォーマンス

・ データ送信/受信での実機パフォーマンス

ŰDP10G-IPのアプリケーション

- ・ ブロードキャストによる動画配信
 - リアルタイム性重視のストリーム・データ配信
 - 最小のオーバーヘッド/レイテンシが重要
 - 純ロジックによるUDP10G-IPで最大限のメリット
- ・ リアルタイム性の高いオンライン・ゲーム
 - ゲーム・データとユーザ操作情報の双方向通信
 - ユーザ操作性の維持に低レイテンシが必須
 - 同時双方向に対応するUDP10G-IPが最適

2019/3/26 Design Gateway Page 21

問い合わせ

- ・ ホームページに詳細な技術資料を用意
 - http://www.dgway.com/UDP10G-IP_A.html
- ・問い合わせ
 - 株式会社Design Gateway
 - E-mail : info@dgway.com
 - FAX: 050-3588-7915

改版履歴

2017/12/7	日本語プレゼン初版リリース
2018/3/26	カスタマイズでマルチキャスト/ブロードキャスト送信可能とする説明を追加
	2017/12/7 2018/3/26

2019/3/26 Design Gateway Page 23