
dg_xxvgmacrsfecip_refdesign_xilinx.doc

XXVGMACRSFEC-IP reference design

1 Introduction ... 1
2 Hardware overview ... 3

2.1 25G Ethernet PMA (25G BASE-R) ... 4
2.2 XXVGMACRSFEC-IP ... 4

2.3 PacketGen .. 5
2.4 EMAC Timer ... 11
2.5 CPU and Peripherals .. 12

2.5.1 AsyncAxiReg .. 13
2.5.2 UserReg ... 15

3 CPU Firmware on FPGA .. 17
3.1 Reset EMAC and Transceiver... 18

3.2 Loopback Transfer Test .. 18
3.3 Bit Error Rate Test .. 19
3.4 Function list in User application .. 20

4 Revision History .. 21

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 1

XXVGMACRSFEC-IP reference design

1 Introduction

With the increasing network speeds in data center and industrial systems, errors in data
transmission are also becoming more frequent. The reasons for these errors are many, including
attenuation over distance in optical cables and equipment quality. To mitigate these errors, the
25Gb Ethernet standard now includes Forward Error Correction (FEC) in the form of
Reed-Solomon FEC (RS-FEC). As shown in Figure 1-1, incorporating RS-FEC into the 25Gb
Ethernet standard can enhance the network quality in terms of Bit Error Rate (BER). For instance,
the BER of the right system with a value of 10-12 is improved from 5x10-5 due to the
implementation of RS-FEC(1). A BER of 10-12 is considered to be “Nearly free-error” and is
commonly used in practice for other Ethernet speed rates.

*(1) Source: https://blogs.cisco.com/sp/25-gigabit-pluggable-transceivers-for-data-center-applications

Figure 1-1 Bit Error Rate in 25Gb network system

Despite the potential increase in system latency that comes with integrating RS-FEC into the
Ethernet standard, our XXVGMACRSFEC-IP was specifically designed to address this issue.
While RS-FEC is a block coding method, we have ensured that our solution maintains a
low-latency system without sacrificing performance, achieving 25G Ethernet as per standard
specifications. In addition, our XXVGMACRSFEC-IP includes both MAC and PCS layer logics for
25GBASE-R, enabling seamless integration with our TOE25G-IP and UDP25G-IP solutions for a
complete network solution.

https://blogs.cisco.com/sp/25-gigabit-pluggable-transceivers-for-data-center-applications

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 2

Figure 1-2 Demo system for latency measurement

The purpose of this reference design is to showcase the IP performance in terms of latency. To
achieve this, the design utilizes the loopback capability at the physical connection, as shown in
Figure 1-2, to demonstrate round-trip latency. The demo measures latency results from three
parts - the XXVGMACRSFEC IP, the Xilinx GTY transceiver, and SFP28 loopback connector - in
both transmit and receive directions. Despite the integration of RS-FEC, the average latency of
473.60 ns (as shown in the Figure 1-2) is relatively low.

However, measuring latency time individually in transmit and receive paths at the physical layer is
challenging. As a result, the latency time of the XXVGMACRSFEC IP in transmit and receive
paths is obtained through simulation.

The reference design comprises three primary components: the XXVGMACRSFEC IP, the
transceiver, and Test logic. The Test logic is applied to measure the round-trip latency of the
system, which refers to the time it takes for the first data of a packet to be transmitted and
returned.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 3

2 Hardware overview

Figure 2-1 Demo block diagram

The test system utilizes a Serial interface (UART) to connect the CPU on the FPGA with a PC,
enabling the user of a Serial console as a user interface. Integrating with XXVGMACRSFEC-IP,
the FPGA system can operate the 25G Ethernet system and measure its latency time as the
round-trip latency time. During initialization, the system can be configured to operate in two
loopback modes. The first mode is an external loopback, which requires an SFP28 loopback
module connected to the transceiver operating in normal mode. The second mode is an internal
loopback, which is operated by configurating the transceiver to operate Near-End PMA loopback.

The XXVGMACRSFEC-IP is connected to the transceiver for physical data communication, while
the user interface of the XXVGMACRSFEC-IP connects to PacketGen, which creates, sends,
receives, and verifies test data packets utilizing the physical loopback capability. Additionally, the
design includes EMAC Timer to measure the round-trip latency time from the start-of-packet of
the transmitted packet to the start-of-packet of the received packet. The CPU firmware controls
the register files of UserReg via the AXI4-Lite bus, which is used to control hardware modules or
read their status.

The design comprises three clock domains: CpuClk which runs the CPU system, MacClk which is
primarily used in the system and applied in the user interface of the IP, and RxMacClk which is
used by the IP to interface with the receive interface of the transceiver. The frequency of MacClk
and RxMacClk is 390.625 MHz for 25G Ethernet, which is relatively high frequency in the FPGA
system. As the purpose of this demo is to showcase round-trip latency, the user logic in this demo
operates at MacClk. However, it is recommended to include another clock in the system to run
user logic at a lower clock frequency. AsyncAxiReg inside LAxi2Reg is included to facilitate clock
domain crossing in the system (CpuClk and MacClk). Further details of each module within the
XXVGMACRSFECLpTest are described below.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 4

2.1 25G Ethernet PMA (25G BASE-R)

Xilinx’s GTY Transceiver has been designed to support Physical Medium Attachment (PMA)
for 25G BASE-R. To configure the transceiver parameters for the operation of the 25G PMA,
Xilinx provides the UltraScale FPGAs Transceivers Wizard. An example configuration of the
Xilinx GTY transceiver parameter on the KCU116 board is provided below.

Table 2-1 Parameter value of Xilinx GTY transceiver

Parameter name Value

Line Rate (Gb/s) 25.78125

PLL type QPLL0

Requested reference clock (MHz) 156.25

Actual Reference Clock (MHz) 322.265625

Encoding/Decoding Async. Gearbox for 64B/66B

User data width 64

Internal data width 64

TXOUTCLK source TXPROGDIVCLK

RXOUTCLK source RXPROGDIVCLK

Differential swing and emphasis mode Custom

Insertion loss at Nyquist (dB) 30

Equalization mode Auto

Link coupling AC

Termination Programmable

Programmable termination voltage (mV) 800

PPM offset between receiver and transmitter 200

For further information on the Transceivers Wizard and GTY Transceiver, please refer to the
link provided.

UG573: UltraScale Architecture GTY Transceivers
https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug578-ultrascal
e-gty-transceivers.pdf

PG182: UltraScale FPGAs Transceivers Wizard
https://docs.xilinx.com/v/u/en-US/pg182-gtwizard-ultrascale

2.2 XXVGMACRSFEC-IP

The XXVGMACRSFEC-IP is a module that incorporates a 25G Ethernet MAC and an
integrated PCS featuring RS-FEC. It connects to a transceiver (PMA) on one end and a user
interface on the other. Specifically, the user interface is a 64-bit AXI4-Stream interface.

For additional information, please refer to the datasheet.
https://dgway.com/products/IP/GEMAC-IP/dg_xxvgmacrsfecip_data_sheet_xilinx.pdf

https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug578-ultrascale-gty-transceivers.pdf
https://docs.xilinx.com/v/u/en-US/pg182-gtwizard-ultrascale
https://dgway.com/products/IP/GEMAC-IP/dg_xxvgmacrsfecip_data_sheet_xilinx.pdf

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 5

2.3 PacketGen

Figure 2-2 PacketGen interface

PacketGen is the test logic of XXVGMACRSFEC-IP that comprises two individual logic
blocks: TxMAC and RxMAC. The TxMAC logics transmit the data stream to the tx_axis_*
interface, which is the 64-bit AXI4 stream standard. On the other hand, the RxMAC logics
receive and verify the data stream from the rx_axis_* interface, which is also follow the
64-bit AXI4 stream standard. The UserReg controls and initiates the operation of PacketGen.
To commence the data transfer with a specified transfer length, the UserStart is set to 1b
with UserLen parameters. For more details information of PacketGen, please refer below.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 6

Figure 2-3 PacketGen block

The PacketGen module’s logic diagram is shown in Figure 2-3, which comprises two
sections: TxMAC on the top and RxMAC at the bottom. Upon setting UserStart to 1b, the
busy status (UserBusy) becomes 1b until the last data of the returned packet is received.
The rising edge of UserBusy is utilized to reset the internal signals for the new transfer. To
generate a transmitted packet until the last data of the packet is completely transferred,
tx_axis_tvalid is set to 1b. The TxRamain Counter computes the total amount of transmitted
data from the UserLen input. It is decremented after each data is accepted to determine the
last beat of Tx packet transmission by setting tx_axis_tlast to 1b. The 64-bit transmitted data
(tx_axis_tdata) is formed using a 16-bit incremental pattern that always starts with a zero
value. If the packet size is not aligned to 64-bit units (UserLen[2:0] is not equal to 0), the byte
valid (tx_axis_tkeep) will not set to an all-one value at the last data. The three lower bits of
UserLen are decoded to determine the value of tx_axis_tkeep at the last beat of data
transfer.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 7

The loopback logic returns the transmitted packet from the tx_axis_* interface to the
rx_axis_* interface. To determine the current amount of data in the received packet, the
RxLength Cal decodes the byte valid (rx_axis_tkeep) and the data valid (rx_axis_tvalid), and
outputs the result to UserRxLen. UserRxLen is also used to generate the expected 64-bit
data (rExpPatt) for comparison with the received data (rx_axis_tdata). In cases where the
packet length is less than 60 bytes, the received data includes the zero-padding data. To
generate the expected data for comparison with the zero-padding, the RxRemain Counter
determines the end of the actual data transfer by decrementing while each data is received.
Once all data has been received, rRxZeroPadEn is set to 1b to switch the expected value of
received data from the rExpPatt signal to be zero value instead. If the received data does not
match the expected value, UserVerFail is set to 1b to indicate the verification error. Upone
completion of the received packet, rx_axis_tuser is monitored to detect EMAC errors and
assert UserRxError.

Furthermore, the signal quality of the test system can be assessed by monitoring the
RxRSFECUser signal, which generates three signals through three counters. The first
counter, FECBlkCnt, counts the total number of received RSFEC blocks after FECCntReset
is asserted. This counter is incremented when RxRSFECUser[0] is set to 1b. The second
counter, FECCorrClkCnt, counts the total number of received RSFEC blocks that contain
correctable errors after FECCntReset is asserted. This counter is incremented when both
RxRSFECUser[0] and RxRSFECUser[1] are set to 1b. Lastly, the third counter,
FECUnCorrBlkCnt, counts the total number of received RSFEC blocks that contain
uncorrectable errors after FECCntReset is asserted. This counter is incremented when both
RxRSFECUser[0] and RxRSFECUser[2] are set to 1b. If the last counter is not equal to zero,
it indicates a potential problem with the test system’s signal quality. Additionally, if the
calculated error rate, which is (FECCorrBlkCnt + FECUnCorrClkCnt)/FECBlkCnt, is too high,
it also suggests a problem with the signal quality.

Next, the timing diagrams that show the signal details during operation are provided.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 8

Transmit packet

Figure 2-4 TxMAC timing diagram

The following steps outline the process of creating and transmitting a packet to
XXVGMACRSFEC-IP, after setting UserStart to 1b.

1) To initiate packet transmission, UserBusy is set to 1b. The total clock cycles required for

transmitting the packet are calculated by reading the UserLen value and using
rTxRemCnt. For example, in Figure 2-4, a 1514-byte packet requires 190 clock cycles
(rounding up UserLen/8).

2) When UserBusy rises, the first data is transmitted by setting tx_axis_tvalid to 1b including
the first data generated on tx_axis_tdata. Eacg 64-bit data output is created by using the
16-bit data counter, rTxData. While transmitting the packet, tx_axis_tkeep is always set to
FFh to indicate 64-bit valid data, except for the last data, which may have fewer valid
bytes. The data transfer is continuous by setting tx_axis_tvalid to 1b until the last data is
sent.

3) While transmitting each data with both tx_axi_tvalid and tx_axi_tready set to 1b,
rTxRemCnt is decremented to indicate the remaining transmitted data, and rTxData is
incremented to generate the next value of transmitted data on tx_axis_tdata.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 9

4) If the total amount of data exceeds one, the last data generating is indicated by checking

rTxRemCnt=2 and tx_axis_tvalid=1b. The last data is transferred by setting tx_axis_tlast
to 1b and setting tx_axis_tkeep to the valid bytes of the last data, decoded from
rLastLen[2:0] (the latched value of UserLen[2:0]).

5) XXVGEMACRSFEC-IP then pauses data transmission for 3 or 7 cycles by de-asserting
tx_axis_tready to 0b while creating the Ethernet frames.

6) After the loopback logic returns the last data of the packet, the operation is finished, and
UserBusy is set to 0b.

Receive packet

Figure 2-5 RxMAC Timing diagram

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 10

To verify the received packet sent by the loopback logic, the following procedure is
employed. If any errors are detected in the received packet, the error flags will be set.

1) The first data of received packet is transferred by setting rx_axis_tvalid to 1b, along with

the 64-bit data on rx_axis_tdata and the 8-bit byte enable on rx_axis_tkeep. The packet is
continuously transferred by keeping rx_axis_tvalid set to 1b until the last data is
transferred. UserRxLen is incremented by 8 for every data, except the last data which has
a variable number of valid bytes that must be decoded from the rx_axis_tkeep.
UserRxLen is used to count the total amount of received data in byte units.

2) UserRxLen is also used to generate the 64-bit expected data, rExpPatt, for verifying with
the received data. The first expected data (E0) is valid the next clock after receiving the
first data (D0) on rx_axis_tdata, so it needs to add one clock latency time to the received
data for comparing with rExpPatt.

3) If the received data does not match the expected data (rExpPatt), the verification fail flag
(UserVerFail) is set to 1b.

4) When the last data of the packet is received, indicated by rx_axis_tvalid and rx_axis_tlast
being set to 1b, UserRxError loads its value from rx_axis_tuser. If UserRxError is set to
1b, it means the XXVGMACRSFEC-IP has detected an error on the MAC layer.

5) After the last data of the packet is received, UserBusy is set to 0b and the module returns
to Idle status. The module is then ready to receive a new command.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 11

2.4 EMAC Timer

As illustrated in Figure 2-1, the EMAC Timer is utilized to calculate the round-trip latency of
the XXVGMACRSFEC-IP and the transceiver with loopback capability. To achieve loopback,
an external loopback module or the transceiver’s internal loopback can be used. The latency
time is measured from the transmission of the first data of the Tx packet to the reception of
first data of the Rx packet on the XXVGMACRSFEC-IP’s user interface.

Figure 2-6 EMAC Timer Timing Diagram

The following details explain the EMAC operation.
1) Initially, rTxAxiSSOP is set to 1b to detect the first data beat of the transmitted packet.

After the first data of the Tx packet is transferred (tx_axis_tready=1b, tx_axis_tvalid=1b,
and rTxAxiSSOP=1b), rTxAxiSSOP is de-asserted to 0b, and rTimerEn is set to 1b to
activate the round-trip latency timer.

2) At the beginning of each operation, the round-trip latency timer (MacRTTCnt) is reset to a
zero value. It is incremented every clock cycle while rTimerEn is set to 1b.

3) After the last data of the transmitted packet is transferred (tx_axis_tvalid=1b and
tx_axis_tlast=1b and tx_axis_tready=1b), rTxAxiSSOP is re-asserted to 1b to scan the
next packet.

4) Once the first data of the received packet is transferred, rTimerEn is set to 0b.
5) At this point, the round-trip latency measurement is completed, and the result of

MacRTTCnt is valid, indicating the latency time in clock cycle unit. The CPU reads the
MacRTTCnt value, which is then converted to nanoseconds by multiplying it with 2.56
(the time period of 390.625 MHz).

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 12

2.5 CPU and Peripherals

The 32-bit AXI4-Lite is used for CPU access to peripherals such as Timer and UART in the
test system. Control and status signals are connected to be registers for CPU access as a
peripheral through the 32-bit AXI4-Lite bus. The CPU assigns a different base address and
address range to each peripheral, allowing access to one peripheral at a time.

In the reference design, the test hardware is connected to the CPU system as a peripheral
with a specified base address and range. Therefore, the LAxi2Reg module that interfaces
with the CPU must support the AXI4-Lite bus standard for CPU writing and reading, as
shown in Figure 2-7.

Figure 2-7 LAxi2Reg block diagram

The LAxi2Reg module includes two parts: AsyncAxiReg and UserReg. AsyncAxiReg is
designed to convert the AXI4-Lite signals to a simple Register interface with a 32-bit data
bus size, similar to AXI4-Lite data bus size. In addition, AsyncAxiReg includes
asynchronous logic to support clock domain crossing between the CpuClk domain and
MacClk domain.

UserReg includes the Register file for the parameters and the status signals of the test
logics. There are four hardware modules connected to UserReg which are PacketGen,
EMAC Timer, XXVGMACRSFEC-IP, and Transceiver. Further details of AsyncAxiReg and
UserReg are described below.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 13

2.5.1 AsyncAxiReg

Figure 2-8 AsyncAxiReg interface

The AXI4-Lite bus interface signals are categorized into five groups: LAxiAw* (Write address
channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr* (Read
address channel), and LAxir* (Read data channel). More information on creating custom
logic for the AXI4-Lite bus can be found in the following document.
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/
designing_a_custom_axi_slave_rev1.pdf

According to the AXI4-Lite standard, the write channel and read channels operate
independently for both control and data interfaces. Therefore, the logic in the AsyncAxiReg
module that interfaces with the AXI4-Lite bus is divided into four groups: Write control logic,
Write data logic, Read control logic, and Read data logic, as shown on the left side of Figure
2-8. The Write control I/F and Write data I/F of the AXI4-Lite bus are latched and transferred
to become the Write register interface with clock domain crossing registers. Similarly, the
Read control I/F of the AXI4-Lite bus is latched and transferred to the Read register interface,
while Read data is returned from the Register interface to the AXI4-Lite bus via clock domain
crossing registers. In the Register interface, RegAddr is a shared signal for write and read
access, loading the value from LAxiAw for write access or LAxiAr for read access.

The Register interface is compatible with a single-port RAM interface for write transaction.
However, the read transaction of the Register interface has been slightly modified from the
RAM interface by adding the RdReq and RdValid signals to control read latency time. Since
the address of the Register interface is shared for both write and read transactions, the user
cannot write and read the register simultaneously. The timing diagram of the Register
interface is shown in Figure 2-9.

https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 14

Figure 2-9 Register interface timing diagram

1) Timing diagram to write register is similar to that of a single-port RAM. The RegWrEn

signal is set to 1b, along with a valid RegAddr (Register address in 32-bit units),
RegWrData (write data for the register), and RegWrByteEn (write byte enable). The byte
enable consists of four bits that indicate the validity of the byte data. For example, bit[0],
[1], [2], and [3] are set to 1b when RegWrData[7:0], [15:8], [23:16], and [31:24] are valid,
respectively.

2) To read register, AsyncAxiReg sets the RegRdReq signal to 1b with a valid value for
RegAddr. The 32-bit data is returned after the read request is received. The slave detects
the RegRdReq signal being set to start the read transaction. In the read operation, the
address value (RegAddr) remains unchanged until RegRdValid is set to 1b. The address
can then be used to select the returned data using multiple layers of multiplexers.

3) The slave returns the read data on RegRdData bus by setting the RegRdValid signal to 1b.
After that, AsyncAxiReg forwards the read value to the LAxir* interface.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 15

2.5.2 UserReg

Figure 2-10 UserReg block diagram

The UserReg module includes the registers for write and read access with four hardware
modules: PacketGen, EMAC Timer, XXVGMACRSFEC-IP, and Transceiver. The register
file within UserReg has a 32-bit bus size, so write byte enable (RegWrByteEn) is not utilized.
When writing to hardware registers, the CPU must use a 32-bit pointer to place a 32-bit valid
value onto the write data bus. On the other hand, when the CPU reads the hardware
registers, a 32-bit read data is returned. To select the active register for write or read access,
the address is decoded by Address Decoder. The address space is divided into two areas,
as shown in Figure 2-10.

1) 0x0000 – 0x0FFF: Write-only access register for the control signals.
2) 0x1000 – 0x1FFF: Read-only access register for the status signals.

The Address Decoder separates the accessing area of the request transaction by decoding
the upper bits of RegAddr, while the lower bits are utilized to select the active register in the
specific area. Since there is only one status register in UserReg, a single-level multiplexer is
applied to select the read data. The latency time of read data is equal to one clock cycle due
to the use of one D Flip-flop of RegRdReq to create RegRdValid. More detailed information
regarding the address mapping within the UserReg module is presented in Table 2-2.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 16

Table 2-2 Register map Definition

Address Register Name Description

Wr/Rd (Label in the “xxvgmacrsfeclptest.c”)

BA+0x0000 – BA+0x0FFF: User Logic Write Area

BA+0x0000 User start command Wr[0] – Start PacketGen operation by setting 1b. The logic creates

and sends the data packet and then waits its return. Wr (USRCMD_INTREG)

BA+0x0004 Packet length Wr[31:0] – Total amount of transmitted data in byte unit.

Valid from 1-9014 bytes. Wr (USRTXLEN_INTREG)

BA+0x0008 MAC Reset Wr[0] – Set to 1b for resetting the EMAC module and the transceiver

and set to 0b for releasing the reset. Wr (MACRST_INTREG)

BA+0x000C Loopback mode Wr[0] – Set to 1b for enabling the transceiver loopback (Near-end

PMA) and set to 0b for using transceiver in normal operation (Use

loopback connector). This register affects when only MAC Reset is

active.

Wr (MACLPBACK_INTREG)

BA+0x0010 Reset Error Counter Wr[0] – Set to 1b to clear all FEC counter value in PacketGen module

which can be read from FECBLKL/HCNT_INTREG,

FECCORRCLKCNT_INREG, and FECUNCORRBLKCNT_INTREG.

Wr (FECCNTRST_INTREG)

BA+0x1000 – BA+0x1FFF: User Logic Read Area

BA+0x1000 User status Rd

[0] – PacketGen Busy (0b: Idle, 1b: PacketGen module is busy)

[1] – Mapped to Linkup signal of XXVGMACRSFEC-IP (1b: Linkup)

[2] – Data verification error (0b: Normal, 1b: Error)

[3] – Latched Rx MAC error indicator (0b: Normal, 1b: Error)

Bit[3:2] are auto-cleared when new operation is started or reset.

Rd (USRSTS_BUSY)

BA+0x1004 Total receive length Rd[15:0] – Current amount of received data from

XXVGMACRSFEC-IP in byte unit. The value is cleared to 0 when the

new operation is started by setting USRCMD_INTREG[0] to 1b.

Rd (USRRXLEN_INTREG)

BA+0x1010 Current receive RSFEC block (Low) Rd[31:0] – 32 lower bits (bit[31:0]) of the current number of received

RSFEC code blocks Rd (FECBLKLCNT_INTREG)

BA+0x1014 Current receive RSFEC block (High) Rd[3:0] – 4 upper bits (bit[35:32]) of the current number of received

RSFEC code blocks Rd (FECBLKHCNT_INTREG)

BA+0x1018 Current Correctable RSFEC block Rd[31:0] – The current number of RSFEC code blocks that contain

the correctable error Rd (FECCORRBLKCNT_INTREG)

BA+0x101C Current Uncorrectable RSFEC block Rd[31:0] – The current number of RSFEC code blocks that contain

the uncorrectable error Rd (FECUNCORRBLKCNT_INTREG)

BA+0x1020 Round-trip latency time Rd[31:0] – Round-trip latency time in clock cycle unit. The value is

measured by a hardware counter from Transmit to Receive path. Rd (USRTIMER_INTREG)

BA+0x1800 IP version Rd[31:0] – Mapped to IPVersion output from XXVGMACRSFEC-IP

when the system integrates the IP. Otherwise, it is equal to 0. Rd (IPVER_INTREG)

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 17

3 CPU Firmware on FPGA

Upon FPGA boot-up, a welcome message is displayed and user selects the transceiver loopback
mode, either external or internal.

• External loopback mode is a normal operation of the transceiver but a loopback connector
must be plugged in at the physical interface to initialize the system.

• Internal loopback mode is an optional setting of the transceiver, it is set to “Near-End PMA
Loopback”, in which the transmit path is redirected to the receive path within the transceiver
itself. This mode does not require any additional equipment to complete the initialization
process.

After the user selects the mode, it is registered in the hardware, and both the transceiver and
XXVGMACRSFEC-IP are reset. The CPU then waits for the physical layer's initialization by
detecting the link up status, which is an output of the IP. More details of this step are described in
the Reset EMAC and Transceiver menu (topic 3.1).

Once the IP initialization is complete, a completion message and the Main menu are displayed
respectively. In summary, user only selects the transceiver loopback mode and waits for the
initialization process. There are three test operations available for the user to select, and more
details about each menu are described as follows.

Figure 3-1 System initialization using External loopback mode

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 18

3.1 Reset EMAC and Transceiver

This menu allows the user to change the transceiver loopback mode and also reset both the
transceiver and the IP. The sequence of resetting the system is as follows.
1) Ask user to select the transceiver loopback mode, either external or internal.
2) Reset the physical layers, which include the IP and the transceivers, by setting

MACRST_INTREG[0] to 1b.
3) Change the transceiver setting by registering the mode in MACLPBACK_INTREG[0].
4) Release the physical layers’ reset by setting MACRST_INTREG[0] to 0b.
5) Wait for the IP initialization by monitoring its link up (USRSTS_INTREG[1]=1b).

Note: If the IP initialization takes longer than 5 seconds, a message displaying the link
down status is shown. For the external loopback mode, it is often due to the unplugged
loopback connector.

6) Display a completion message after all reset sequences and initialization processes are
complete.

3.2 Loopback Transfer Test

This menu is designed to measure the IP’s round-trip latency by sending a data packet
through the transmit interface and waiting for its return through the receive interface. The
PacketGen module creates, sends, and waits for the data packet, and there is a latency
measurement part for determining the latency time. The sequence of Loopback Transfer
Test is as follows.
1) Ask user for the following test parameters

a) Input packet length: The unit of the packet length is byte and the valid range of value is
1 – 9014 bytes. The input can be decimal unit or hexadecimal unit.

b) Input number of the packets: The number of packets in this test operation and the valid
range of value is 1 – 256 packets. The input can be decimal unit or hexadecimal unit.

2) Register the packet length in the hardware by setting USRTXLEN_INTREG[15:0] to the
packet length value set by user.

3) Initialize the variables required for the latency calculation, which are the average,
minimum, and maximum latency. These variables are initially set to 0, 0xFFFF_FFFF, and
0, respectively.

4) Run the following steps multiple times for the number of packets.
a) Set the start command to the user logic in the hardware by setting

USRCMD_INTREG[0] to 1b. Then, USRSTS_BUSY[0] is applied to check whether the
operation is complete or not, where 1b means the operation is in progress and 0b
means the operation is finished.

b) Check the errors while waiting the user logic to complete its operation by checking the
status (USRSTS_INTREG). There’re three cases considered as errors which are the
user logic fails to verify the received data, the user logic receives an error indication
from the received data, and the link connection is down.

c) After each test, check the received packet length by comparing it with the packet
length set by user. In case the set packet length is below 60 bytes, the compared
packet length is set to 60 bytes instead due to the zero-padding feature.

d) Update the calculated latency variables.
5) After the tests are finished, “Loopback test complete” is displayed.
6) Calculate and display the latency times and the current transceiver loopback mode.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 19

3.3 Bit Error Rate Test

This menu enables users to check the bit error rate transferring data from the Tx to Rx
interface using the loopback circuit. The error rate is calculated by dividing the number of
received RSFEC code blocks that contains errors by the total number of received RSFEC
code blocks during a specified time. To conduct the Bit Error Rate Test, follow these steps.
1) Ask the user to enter the test duration in seconds, valid from 1 to 10800 (3 hours). The

input can be decimal unit or hexadecimal unit.
2) Reset the error counter value in hardware by setting FECCNTRST_INTREG[0] to 1b.
3) Start the timer and wait until the timer reaches the duration specified in step 1). While the

timer is running, the user can input certain keys to select one of two options.
a) Press ‘0’ to display the current value of all RSFEC counters by reading

FECBLKH/LCNT_INTREG[3:0], FECCORRBLKCNT_INTREG[31:0], and
FECUNCORRBLKCNT_INTREG[31:0]. After that, display all read values on the
console and re-display the two options.

b) Press ‘1’ to exit the test early. After selecting this option, the console will display
“Cancel operation” and the test will be terminated.

Once the timer reaches the set duration, the test will end and the console will display
“Finish operation”.

4) Display the test result on the console, which include the total runtime, the total number of
received RSFEC code blocks, the total number of correctable error RSFEC blocks, and
the total number of uncorrectable error RSFEC blocks.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 20

3.4 Function list in User application

This topic describes the function list to run the operation of XXVGMACRSFEC-IP in the
loopback demo reference design.

int ber_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Bit Error Rate Test following description in topic 3.3.

int check_error(void)

Parameters None

Return value 0: No error
-1: Errors have been occurred

Description Read USRSTS_INTREG register for the user status. If the data
verification has failed, the error indication has been received, or the link
connection is down, print error messages and then return -1. If none of
these conditions are met, return 0 to indicate normal operation.

void show_latency(unsigned int avg, unsigned int min, unsigned int max)

Parameters avg: Average round-trip time in clock cycle unit
min: Minimum round-trip time in clock cycle unit
max: Maximum round-trip time in clock cycle unit

Return value None

Description Display the latency performance by converting the measured latencies
from clock cycle unit to nanosecond unit and printing them with two-digit
decimals. Additionally, the transceiver loopback mode is displayed to
show the current mode of operation.

void wait_ethlink(void)

Parameters None

Return value None

Description Read USRSTS_LINKUP[1] to check the link connection status. If the link
connection is down, print a message every 5 seconds to indicate that the
link connection is still down. This function is applied for blocking the
software sequence until the ethernet MAC initialization status is found.

void init_eth(void)

Parameters None

Return value None

Description Run Reset EMAC and Transceiver following description in topic 3.1.

int loopback_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Loopback Transfer Test following description in topic 3.2.

dg_xxvgmacrsfecip_refdesign_xilinx.doc

 Page 21

4 Revision History

Revision Date Description

1.0 10-Apr-23 Initial version release

