

NVMe-IP Introduction for Xilinx Ver2.4EX

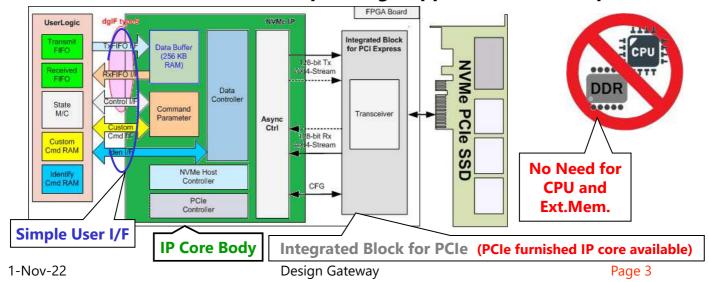
Direct connection between latest PCIe Gen4 NVMe SSD and FPGA

The Very Best Solution for Data Recording Application!

1-Nov-22 **Design Gateway** Page 1

Agenda

- **NVMe-IP Introduction**
 - Summary, Lineup, Merit
 - High Performance and Compact Size
 - Easy User Interface
 - Rich Features
 - Development Environment/Reference Design
- **Optional product (exFAT-IP core)**
- **Application**


What's NVMe-IP

- What's NVMe-IP?
- Advantage

Application

User Merit?

- -> Directly connect NVMe SSD with FPGA
- -> No need for CPU, its F/W, External Memory Supports latest PCIE Gen4 protocol
- -> Best for ultra high speed data recording system
- -> Can develop Storage Application in short period

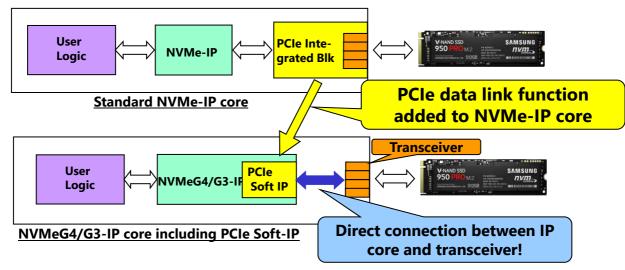
NVMe-IP Lineup

- Multiple lineup for various functions
 - NVMe-IP with... PCIe Soft-IP, external switch, multi-user ...

Core type	Description	
Standard NVMe-IP core	Standard core using PCIe Integrated Block in FPGA	
NVMeG4-IP core	PCIe Soft-IP furnished, 4-Lane PCIe Gen4	
NVMeG3-IP core	PCIe Soft-IP furnished, 4-Lane PCIe Gen3	
NVMeSW-IPcore	Multiple SSD connection via external PCIe switch	
raNVMe-IP core	Supports random read or write access	
muNVMe-IP core	Multiple user (port) with individual access	

NVMe-IP core lineup

(Ask DesignGateway for more detail of NVMeSW-IP core.)



PCIe Soft-IP furnished IP core

NVMeG4-IP core / NVMeG3-IP core

- Can operate without PCIe Integrated Block
- Includes data link layer and connect with transceiver by PCIe Gen4/3
- More SSD connection regardless of PCIe Integrated Block count.

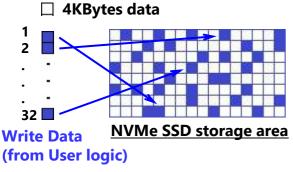
1-Nov-22 Design Gateway Page 5

PCIe Soft-IP furnished IP core (Cont'd)

PCIe protocol	Product Number	Target device family	Supported transceiver	Evalua- tion env.
Gen4 4Lane	NVMeG4-IP-VUP-GTY	Virtex-UltraScale+	GTY	VCU118
	NVMeG4-IP-KUP-GTY	Kintex-UltraScale+	GTY	KCU116
	NVMeG4-IP-ZUP-GTH	Zynq-UltraScale+	GTH	ZCU102/106
Gen3 4Lane	NVMeG3-IP-VUP-GTY	Virtex-UltraScale+	GTY	VCU118
	NVMeG3-IP-KUP-GTY	Kintex-UltraScale+	GTY	KCU116
	NVMeG3-IP-ZUP-GTH	Zynq-UltraScale+	GTH	ZCU102/106
	NVMeG3-IP-KU-GTH	Kintex-UltraScale	GTH	KCU105

NVMeG4-IP/NVMeG3-IP core lineup

Supports all UltraScale+ family and some UltraScale family


Evaluation environment ready for all IP core products

raNVMe-IP for random access

- User can select either Write or Read operation
- Executes 32 commands at maximum concurrently with different (random) address.
- Write or read data per one command is fixed to 4KBytes.

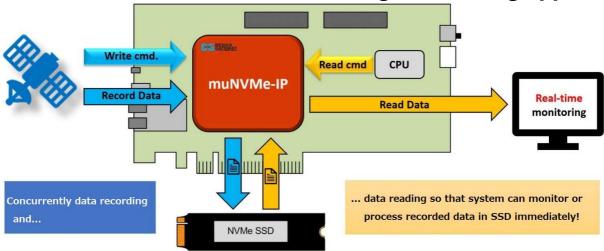
NVMe SSD storage area (to User logic)

32 Write command concurrent operation

32 Read command concurrent operation

raNVMe-IP concurrent command operation image

1-Nov-22 Design Gateway Page 7



Multiple user (multiple port) support

muNVMe-IP core

- Multiple user port R/W accessible to single SSD individually
- Suitable for simultaneous recording and reading application

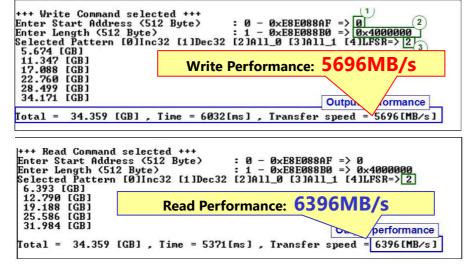
Simultaneous data recording and reading system by muNVMe-IP core

NVMe-IP Merit

1. High Performance and Compact size

do R

- Write=5696MB/s, Read=6396MB/s (measured by Gen4 on VCK190)
- Support PCle GEN4 (Operation confirmed on Ultrascale+)
- IP-Core Size=4170CLBRegs, Memory=59BRAMTile (standard core)
- 2. Interface: Simple and easy connection
 - Direct connection to Xilinx Integrated Block for PCIe
 - User I/F control is parameter with pulse, data is simple FIFO
 - Use BRAM for data buffer (external DDR memory not required)
- 3. Rich Features: Custom command in addition to Read/Write
 - Supports SMART/FLUSH/Shutdown custom command
 - Supports both legacy 512byte and 4Kbyte Sector format
- 4. Environment: Full reference design project
 - Full Vivado project with real board operation in the package


1-Nov-22 Design Gateway Page 9

Merit1: Performance

- NVMe-IP for PCIe Gen4 core real speed
 - Unprecedented Write/Read performance!

Evaluation condition: FPGA Board: VCK190 SSD: Addlink S95 2TB

Write test: 256KB data buffer size Read test: 1MB data buffer size

NVMe-IP for Gen4 Performance Evaluation Result

1-Nov-22

Merit1: Compact Size

Minimized resource consumption

- Dedicated and optimized IP-Core logic for NVMe SSD management

NVMe-IP core for PCIe GEN3

Family	Example Device	Fmax (MHz)	1 12 PORT OF 1	CLB LUTs	CLB	BRAMTile ¹	Design Tools
Kintex-Ultrascale	XCKU040FFVA1156-2E	400	4170	2724	772	59	Vivado2017.4
Zynq-Ultrascale+	XCZU7EV-FFVC1156-2E	400	4170	2670	790	59	Vivado2017.4
Virtex-Ultrascale+	XCVU9P-FLGA2104-2L	400	4170	2675	761	59	Vivado2017.4

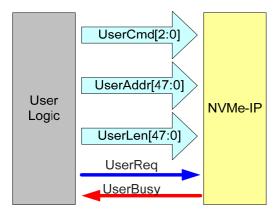
NVMe-IP core for PCIe GEN4 (256KByte data buffer)

Family	Example Device	Fmax (MHz)	CLB Regs	100000000000000000000000000000000000000	Slice ¹	BRAMTile ¹	URAM	Design Tools
Versal Al Core	XCVC1902-VSVA2197-2MP-E-S	375	6270	3848	1050	4	8	Vivado2022.1
Alveo-U50	XCU50-FSVH2104-2-E	375	6525	3805	1093	4	8	Vivado2021.1

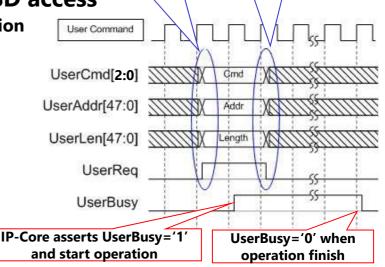
NVMe-IP core standalone resource usage

1-Nov-22 Design Gateway Page 11

Merit2: Command I/F



- Simple User I/F
 - Set Command/Address/Length
 - Issue UserReq pulse

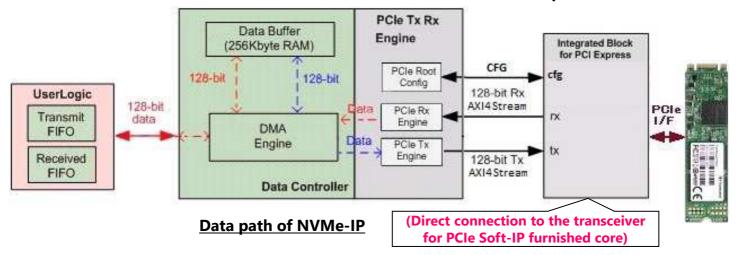

Issue command by UserReq together with Cmd,Addr, and Len

Can set next parameter for next access after UserBusy assertion

- Full Automatic control for SSD access
 - User only can wait UserBusy negation

Basic Command I/F Signals

Command I/F waveform



Merit2: Data I/F

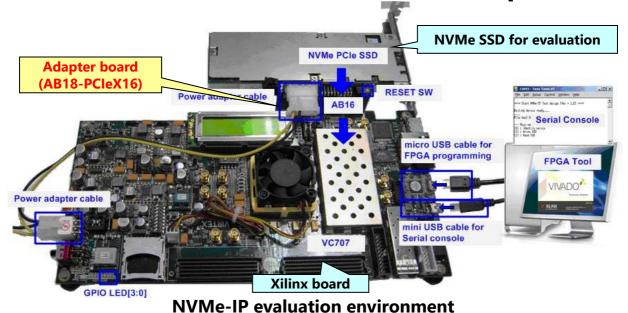
- Simple 128bit FIFO for each of read and write
 - General FIFO of standard Xilinx LogiCORE library
 - Data buffer using 256KByte(*1) BRAM in NVMe-IP

(*1) NVMe-IP for Gen4 can select 1MB buffer size to increase performance

1-Nov-22 Design Gateway Page 13

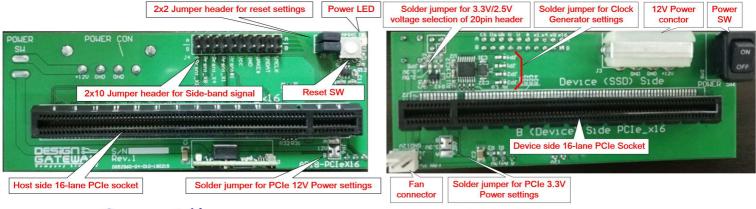
Merit3: Rich Features

- SMART command for SSD health condition check
 - Can monitor internal temperature, total write size, etc.
- FLUSH command to force cache flush operation
 - User can adjust trade-off between performance and data evacuation
- Safe Shutdown before SSD power down
 - IP-core executes safe shutdown by user request
- Supports both 512bytes and 4Kbytes sector format
 - IP-core automatically selects sector format via Identify command


SMART command result example

Merit4: Environment

- Real operation check with Xilinx evaluation board
- Free bit-file for evaluation before IP-core purchase

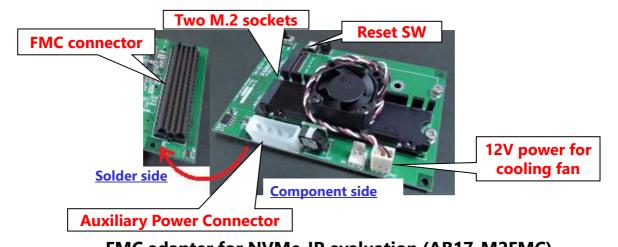

1-Nov-22 Design Gateway Page 15

Merit4: Development Tool#1

- PCIe Adapter board for evaluation (Part#: AB18-PCIeX16)
 - Connect FPGA board to PCIe socket on component side
 - Connect PCIe SSD to PCIe socket on solder side
 - SSD R/W access via adapter board from NVMe-IP in FPGA

Component side

Solder side


PCIe adapter for NVMe-IP evaluation (AB18-PCIeX16)

Merit4: Development Tool#2

- FMC Adapter board for evaluation (Part#: AB17-M2FMC)
 - Two M.2 sockets on component side
 - FMC HPC connector for FPGA connection on solder side
 - High capacity power supply (max 5A for 3.3V output per one SSD)

FMC adapter for NVMe-IP evaluation (AB17-M2FMC)

Design Gateway

VVMe

1-Nov-22

Page 17

Merit4: Reference Design

- Vivado project is attached with NVMe-IP deliverables
- Full source code (VHDL) except IP core
- Can save user system development duration
 - Confirm real board operation by original reference design.
 - Then modify a little to approach final user product.
 - Check real operation in each modification step.

Short-term development is possible without big turn back

Optional product: exFAT-IP Core Introduction

- Optional products for NVMe-IP core
 - Supports data recording with exFAT file format
- PC can directly access to recorded data as a file
 - FPGA writes data to device, reconnect with PC, then PC can read data

PC can directly read recorded data as a file

1-Nov-22 Design Gateway Page 19

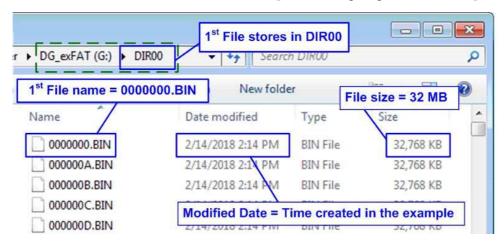
Optional product: exFAT-IP (Cont'd 1)

Feature description

- Executes drive format and data write to file by pure hardwired logic.
- IP core automatically generates file name.
- User logic sends file data via FIFO interface.

Limitation

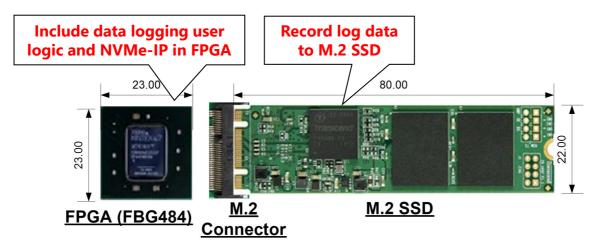
- Drive must be formatted by the IP core, not by the PC.
- Files other than those generated by the IP core cannot be written to the drive.
- File size is determined at format execution and cannot be changed.



Optional product: exFAT-IP (Cont'd 2)

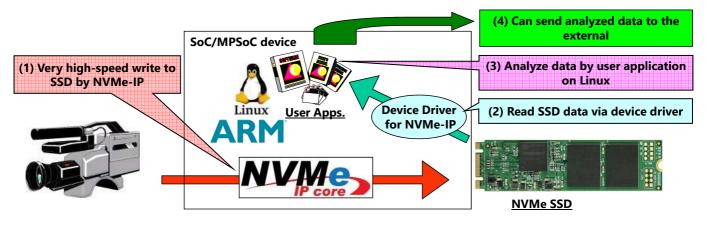
- Reference design for real operation available
 - Executes test file generation via serial console.
 - User can confirm file read compatibility by drive re-plug to the PC.

Generate test file, reconnect with PC, and can check file read compatibility


1-Nov-22 Design Gateway Page 21

NVMe-IP Application Example 1

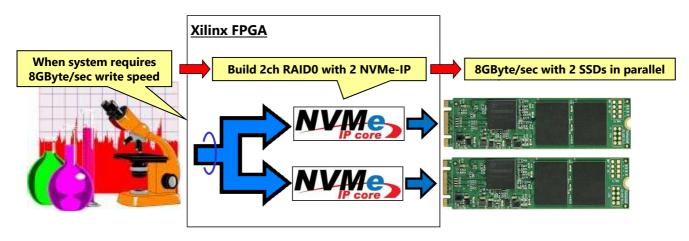
- Space-Saving FPGA data logging system
 - Latest FPGA+M.2 SSD


System area image by FBG484 FPGA and M.2 SSD (unit: mm)

NVMe-IP Application Example 2

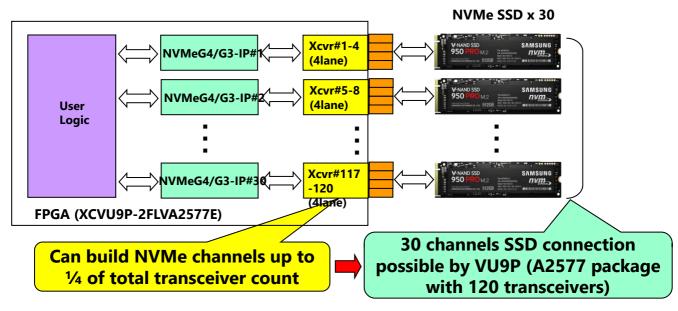
- Recording and Analysis system on Linux
 - Mount Linux and user analysis application on SoC/MPSoC device
 - Very high-speed data recording to SSD via NVMe-IP core
 - Data read from SSD via device driver and analyze by user application

Recording and Analysis sytem on Linux (device driver and reference design available)


1-Nov-22 Design Gateway Page 23

NVMe-IP Application Example 3

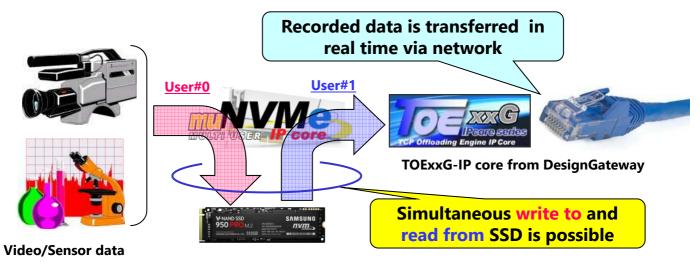
- Ultra High-Speed Recorder
 - Double write speed with multiple SSDs RAID0 configuration
 - Provide RAID0 reference design with 2 or 4 NVMe SSDs


NVMe RAID system supporting 8GByte/sec recording rate

NVMe-IP Application Example 4

Super multi-channel SSD Array by NVMeG3-IP

30 channels M.2 SSD Array system using NVMeG4/G3-IP core


1-Nov-22 Design Gateway Page 25

NVMe-IP Application Example 5

- Concurrent data recording/reading system by muNVMe-IP
 - SSD access by both sides of User#0(write)/User#1(read)

Concurrent recording/reading system by muNVMe-IP core

For more detail

- Detailed technical information available on the web site.
 - https://dqway.com/NVMe-IP X E.html
- Contact
 - Design Gateway Co,. Ltd.
 - sales@design-gateway.com
 - FAX: +66-2-261-2290

TOP DISABILITIES CORES PRODUCTS SERVICE ABOUT TO THE TOTAL SERVICE STATES ABOUT TO THE TOTAL SERVICE S

1-Nov-22 Design Gateway Page 27

Revision History

Rev.	Date	Description
1.0E	10-Jun-16	English Version first release
1.1E	21-Jun-16	Support Kintex-Ultrascale
1.2E	25-Aug-16	Modify page17 because only one x16 DDR4 device can keep NVMe SSD performance
1.3E	12-Sep-16	Support Zynq-7000 and Kintex-7
1.4E	8-Nov-16	Support PCIe GEN3 on Virtex-7
1.5E	21-Dec-16	NVMe-IP core improvement by removing external DDR chip for data buffer
1.6E	6-Jun-17	Performance improved by internal PCIe bridge in NVMe-IP core
1.7E	2-Nov-17	Added Linux driver application and 2ch RAID0 reference design
1.8E	18-Jul-18	Added 4KB sector format, SMART/FLUSH/Shutdown command support
1.9E	9-Jan-19	Add FAT32-IP/exFAT-IP for NVMe-IP optional products
2.0E	24-Sep-19	Add new product of NVMeG3-IP that includes PCIe Soft IP core inside
2.1E	1-Feb-20	Add new product of NVMeG4-IP that includes PCIe Gen4 Soft IP core inside
2.2E	27-Aug-20	Add new product of raNVMe-IP for random access application
2.3E	1-Dec-20	Updated NVMeG4-IP/NVMeG3-IP information
2.4EX	29-Oct-22	Added muNVMe-IP line-up