
NVMe-IPのご紹介 (Xilinx版)

Ver2.4JX

SAMSUNG

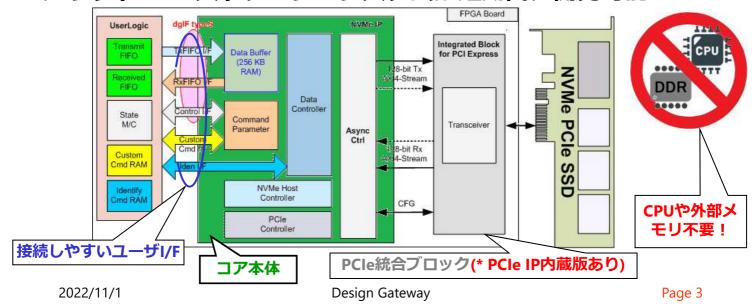
最新のGen4 NVMe SSD をFPGAに直結!

超高速小型レコーダの最適解

2022/11/1 Design Gateway Page 1

NVMe-IP説明資料アジェンダ

- NVMe-IP説明
 - 概要、ラインナップ、特長
 - 特長1:パフォーマンスとコア・サイズ
 - 特長2:ユーザ・インターフェイス
 - 特長3:豊富な機能
 - 特長4:検証環境/リファレンス・デザイン
- ・オプション製品(exFAT-IP)紹介
- アプリケーション・イメージ



NVMe-IPとは

- ・ 概要: NVMe SSDとFPGAを直結しRead/Writeを自動実行
- ・ 特長: CPUや外部メモリ不要, 最新のPCIe Gen4プロトコルに対応
- ・ アプリ: 超高速小型のデータ収録/再生システムに最適
- メリット: SSDストレージ・システムが短期間に開発可能

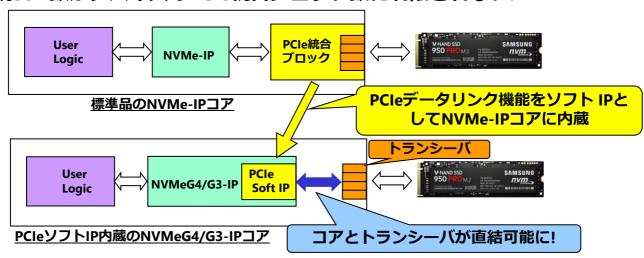
NVMe-IPラインナップ

- ・ 豊富な派生ラインナップ
 - PCIeソフトIP内蔵版/外部スイッチ対応/複数ポート版

コア種類	説明
標準NVMe-IPコア	PCIe統合ブロックを利用する標準版
NVMeG4-IPコア	PCIeソフトIP内蔵版, 4-Lane Gen4対応
NVMeG3-IPコア	PCIeソフトIP内蔵版, 4-Lane Gen3対応
NVMeSW-IPコア	外部PCIeスイッチ経由で複数SSD接続可能
raNVMe-IPコア	ランダム・アクセス対応版
muNVMe-IPコアジ	▶マルチユーザ(複数ポート)対応版,同時R/W可

NVMe-IPコア・ラインナップ

(NVMeSW-IPコア詳細につきましては 弊社まで直接お問い合わせください)



PCIeソフトIP内蔵版コア

・NVMeG4-IPコア/NVMeG3-IPコア

- PCIe統合ブロック(FPGA内蔵のPCIeハードIP)不要
- データリンク層をコア内に実装しPCIe Gen4/Gen3モードで接続
- 接続SSD数がデバイスのPCIe統合ブロック数に制限されない!

2022/11/1 Design Gateway Page 5

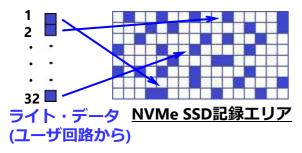
PCIeソフトIP内蔵版コア(続き)

NVMeG4-IPコア/NVMeG3-IPコア・ラインナップ

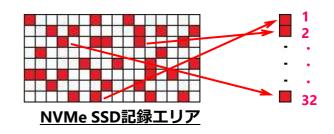
対応PCle プロトコル	IPコア製品型番	対象デバイス・ ファミリ	対応する トランシーバ	実機評価環境
Gen4 4Lane	NVMeG4-IP-VUP-GTY	Virtex-UltraScale+	GTY	VCU118
	NVMeG4-IP-KUP-GTY	Kintex-UltraScale+	GTY	KCU116
	NVMeG4-IP-ZUP-GTH	Zynq-UltraScale+	GTH	ZCU102/ZCU106
Gen3 4Lane	NVMeG3-IP-VUP-GTY	Virtex-UltraScale+	GTY	VCU118
	NVMeG3-IP-KUP-GTY	Kintex-UltraScale+	GTY	KCU116
	NVMeG3-IP-ZUP-GTH	Zynq-UltraScale+	GTH	ZCU102/ZCU106
	NVMeG3-IP-KU-GTH	Kintex-UltraScale	GTH	KCU105

UltraScale+ファミリと一部の UltraScaleファミリに対応 製品ラインナップ

全ての製品で実機 評価環境を用意



ランダム・アクセス対応版


・raNVMe-IPコア

- ライト又はリードいずれかで最大32コマンドを並列同時に実行
- 1コマンド当りのデータ量はライト・リードとも4Kバイト固定
- ハイ・パフォーマンス Write=592KIOPs、Read=226KIOPs

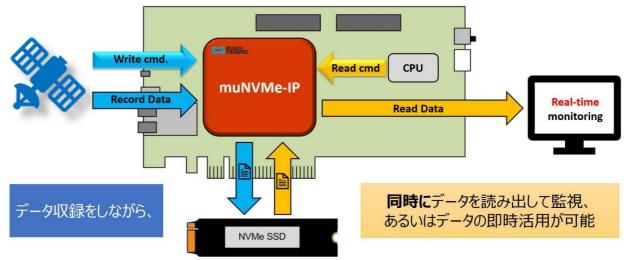
□ 4Kバイト・データ

32ライト・コマンドの並列実行

32リード・コマンドの並列実行

raNVMe-IPコアによるコマンド並列実行イメージ

2022/11/1 Design Gateway Page 7



マルチユーザ(複数ポート)対応版

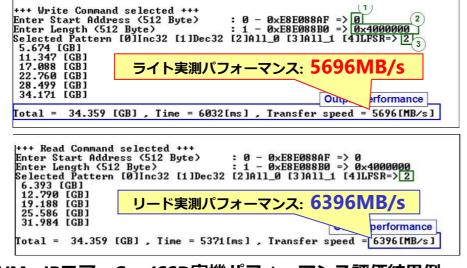
・muNVMe-IPコア

- 複数ユーザ・ポートから単一SSDへ同時にRead/Write可能
- SSDへ記録しながら同時に読み出すアプリケーションに最適

muNVMe-IPコアによる同時収録再生システム例

NVMe-IPの特長

- 1. 高性能:ハイ・パフォーマンスかつコンパクト
- Write=5696MB/s、Read=6396MB/s (Gen4版,VCK190による実測値)
- PCIe GEN4対応 (Virtex-UltraScale+でGEN4実機動作検証済み)
- コア単体サイズ=4170CLBRegs, 必要メモリ=59BRAM Tile (Gen3版コア)
- 2. インターフェイス:接続容易なユーザI/F
 - ユーザI/F:制御はパラメータ+要求パルス、データはFIFO接続
- dgIF type s
- CPUや外部DDR不要(データ・バッファに内部BRAMメモリ使用)
- 3. 多機能:リード/ライトに加えて各カスタムコマンドをサポート
 - SMART/FLUSH/Shutdownなどカスタム・コマンドを実装
 - SSDの大容量化に対応した4Kセクタ・フォーマットに対応
- 4. 環境:Xilinx評価ボードでの試作開発環境
 - 実機動作するリファレンス・デザインをコアに添付


2022/11/1 Design Gateway Page 9

特長1:パフォーマンス

- ・コア(PCle Gen4対応版)の実測値
 - 異次元のライト/リード・パフォーマンス!

NVMe-IPコア・Gen4SSD実機パフォーマンス評価結果例

評価条件:

FPGAボード:VCK190 評価SSD: Addlink S95 2TB

ライト評価:

省メモリ・モード (バッファ256KB)

リード評価:

高パフォーマンス・モード (バッファ1MB)

特長1: コンパクト

・コア消費リソースを最小化

- NVMe SSD制御に特化・最適化した制御ロジックを実装

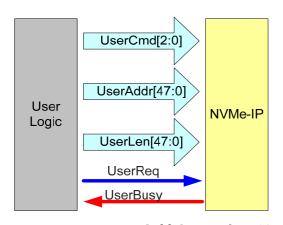
PCIe GEN3対応版コア コンパイル結果

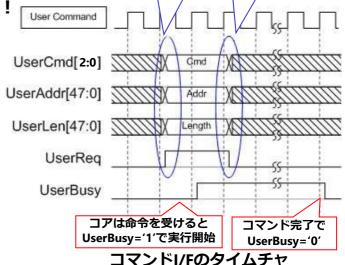
Family	Example Device	Fmax (MHz)		CLB LUTs	CLB	BRAMTile ¹	Design Tools
Kintex-Ultrascale	XCKU040FFVA1156-2E	400	4170	2724	772	59	Vivado2017.4
Zynq-Ultrascale+	XCZU7EV-FFVC1156-2E	400	4170	2670	790	59	Vivado2017.4
Virtex-Ultrascale+	XCVU9P-FLGA2104-2L	400	4170	2675	761	59	Vivado2017.4

PCIe GEN4対応版コア コンパイル結果 (バッファ256KBの省メモリモード)

Family	Example Device	Fmax (MHz)	CLB Regs	CLB LUTs	Slice ¹	BRAMTile ¹	URAM	Design Tools
Versal Al Core	XCVC1902-VSVA2197-2MP-E-S	375	6270	3848	1050	4	8	Vivado2022.1
Alveo-U50	XCU50-FSVH2104-2-E	375	6525	3805	1093	4	8	Vivado2021.1

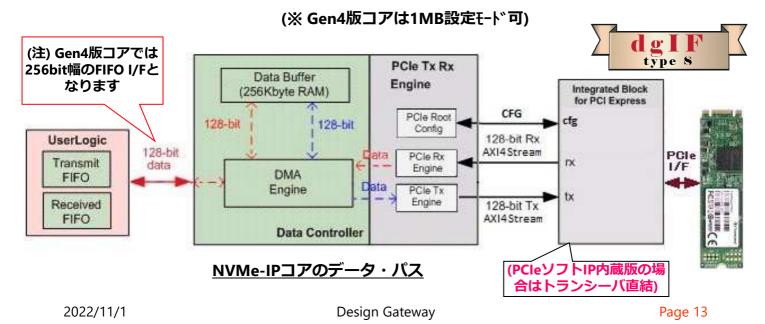
NVMe-IPコア単体の消費リソース


2022/11/1 **Design Gateway** Page 11


特長2:コマンドI/F

- 接続容易なインターフェイス
 - コマンド種類/アドレス/転送長をセット
 - UserReqパルスでコマンド実行開始
- SSDへのアクセス制御は全てコアが実行
 - ユーザ回路はUserBusyをモニタするだけ!

<u>コマンド基本I/Fの信号線</u>

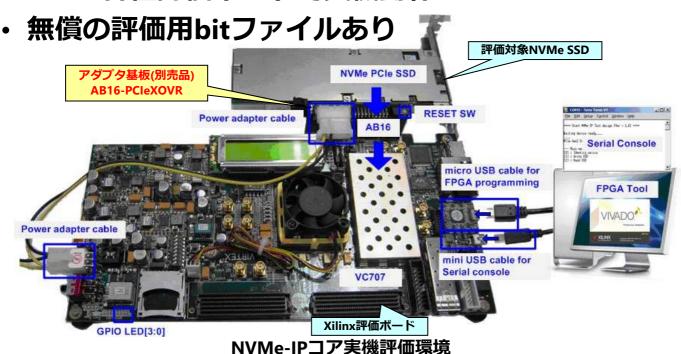


特長2:データI/F

- ユーザ回路I/Fはリード/ライト別の128bit(Gen4版は256bit)幅FIFO
 - FIFOはユーザが使い慣れたXilinx標準ライブラリの汎用FIFO
 - IPコア内データ・バッファに256KByte(※)のBRAM/URAMを使用

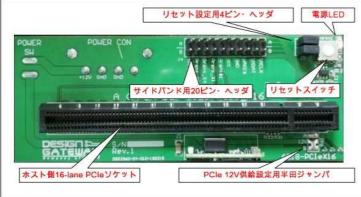
特長3:多機能

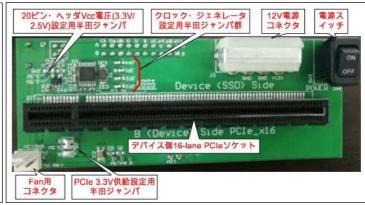
- ・ SSDの状態を取得するSMARTコマンドに対応
 - SSD内部温度や総書込み数などでSSDの健康状態をモニタリング
- ・ FLUSHコマンドでキャッシュを任意のタイミングでフラッシュ
 - パフォーマンス維持と書込みデータ退避のトレードオフをユーザが制御可
- ・ Shutdownコマンドをコアが実行
 - 電源停止時の処理プロセスをユーザ指示でコアが実行
- ・ 4Kセクタも対応済み
 - 今後のSSD大容量化に先駆けて4Kセクタ・フォーマットに対応
 - 従来の512バイト・セクタと4KセクタのSSDフォーマットをコアが自動判別


SMARTコマンドの実行結果例

特長4:評価環境

· Xilinx各種評価ボードで実機動作


2022/11/1 Design Gateway Page 15



特長4: 開発支援ツール#1

- ・ 評価用PCIeアダプタ(型番:AB18-PCIeX16)
 - 部品面PCIeソケットとFPGA評価ボードのPCIeを接続
 - 半田面PCIeソケットにNVMe SSDを装着
 - NVMe-IPを実装したFPGAからアダプタ経由でSSDへR/Wアクセス

アダプタ部品面

アダプタ半田面

評価用PCIeアダプタ: AB18-PCIeX16

特長4: 開発支援ツール#2

- 評価用FMCアダプタ(型番:AB17-M2FMC)
 - 部品面に2スロット分のM.2ソケットを実装
 - 半田面にFPGA拡張I/F接続用FMC HPCコネクタを実装
 - ハイパワー対応電源(SSD1個当り3.3V電源最大5A供給可能)搭載

評価用FMCアダプタ: AB17-M2FMC

2022/11/1 Design Gateway Page 17

特長4: リファレンス・デザイン

- ・評価用ビットファイルのVivado/EDKプロジェクト
- ・ IPコア以外の全ソースコード(ファーム含む)を提供
- ・ユーザ製品の開発期間短縮に貢献
 - まず最初に元のリファレンスで実機動作を確認
 - そこからユーザ製品に向け少しずつ編集
 - 編集ごとに実機動作をStep by Stepで確認

大きな後戻りがなく確実で短期間での製品開発が可能!

オプション製品:exFAT-IPコア紹介

- ・ NVMe-IPコアのオプション製品
 - exFATファイル・システムでのデータ書込みに対応
- 記録データをそのままPCからリード・アクセス
 - PCヘドライブを再接続すると記録データが直接リード可能

記録データはPCからファイルでリード・アクセス可能

2022/11/1 Design Gateway Page 19

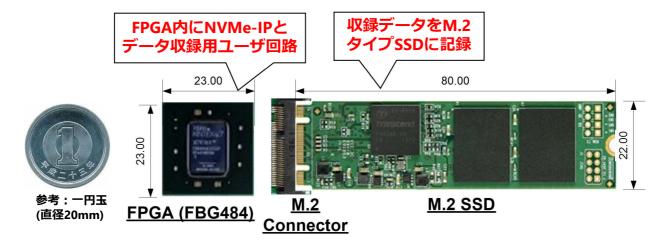
オプション製品:exFAT-IPコア紹介 (続き1)

- ・実装機能概略
 - フォーマット/ファイル・データ書込みをIPコアが純ロジックで実行
 - ファイル名はIPコアが自動生成
 - ファイル・データはユーザ回路からFIFO経由で直接書き込み
- 制約
 - ドライブのフォーマットはIPコアで実行(PCでのフォーマット不可)
 - ドライブにはIPコアが生成したもの以外のファイル書込み不可
 - ファイル・サイズは固定(フォーマット時に選択)で変更不可

オプション製品:exFAT-IPコア紹介 (続き2)

- 実機動作するリファレンス・デザインを用意
 - テスト・ファイル作成メニューをシリアル経由で実行
 - 操作後PCのPCIeに繋ぎ換えてファイルのリード互換性を確認

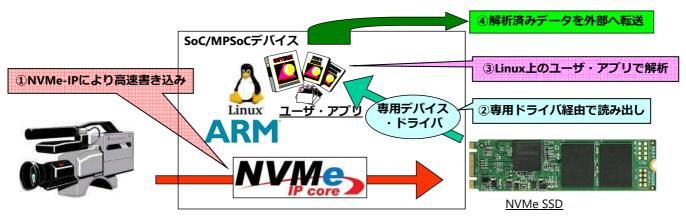
FPGA側で作成したexFATファイルをPCに繋ぎかえてリード操作を確認


2022/11/1 Design Gateway Page 21

NVMe IP core

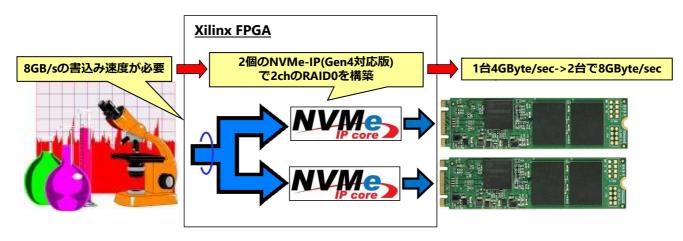
NVMe-IPアプリケーション例1

- ・ 超高速小型FPGAデータ収録システム
 - 最新FPGA+M.2タイプSSD


<u>484ピンFBGパッケージのFPGAとM.2 SSDによる実装専有エリア例 (単位:mm)</u>

- ・収録解析システム
 - SoC/MPSoCデバイスにLinuxとユーザ解析アプリを実装
 - データ収録はNVMe-IPコアでSSDへ高速書込み
 - 専用ドライバでSSDデータを読み出し、アプリで解析

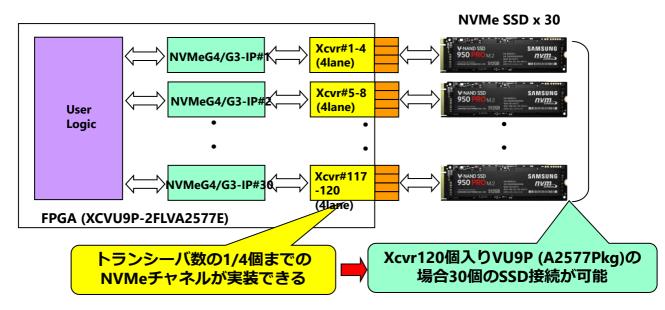
Linux収録解析システム (専用ドライバおよび参照デザインの提供可)


2022/11/1 Design Gateway Page 23

NVMe IP core

NVMe-IPアプリケーション例3

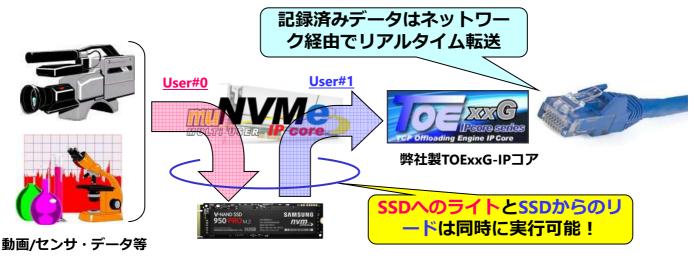
- 超高速データ・レコーダ
 - 複数SSDによるRAID0構成で書込み速度を倍増
 - SSD2台/4台 RAIDの実機動作リファレンス・デザイン


8GByte/secの収録レートを実現するNVMe RAIDシステム

NVMe-IPアプリケーション例4

・超多チャネルSSDアレイ (NVMeG4/G3-IPコア使用)

NVMeG4/G3-IPコアによる30個のM.2 SSDアレイ・システム


2022/11/1 Design Gateway Page 25

NVMe IP core

NVMe-IPアプリケーション例5

- ・ muNVMe-IPによるデータ記録・同時再生システム
 - User#0(ライト)/User#1(リード)両側からSSDを同時アクセス

muNVMe-IPコアによる記録・同時再生システム

NVMe-IP紹介: 問い合わせ

- ・ホームページに詳細な技術資料を用意
 - https://dgway.com/NVMe-IP_X.html
- ・問い合わせ
 - 株式会社Design Gateway
 - E-mail: info@dgway.com
 - FAX: 050-3588-7915

2022/11/1 Design Gateway Page 27

改版履歷

Rev.	日時	履歴
1.0J	2016/6/9	正式リリース初期版(Rev 1.0J)リリース
1.1J	2016/6/21	GEN3 (Kintex Ultrascale)の正式サポート開始
1.2J	2016/8/24	外付けDDR4はx16bit@2400MbpsのDDR4なら1chipで対応できる修正
1.3J	2016/9/12	Zynq-7000, Kintex-7の正式サポート開始
1.4J	2016/11/8	PCIe GEN3対応Virtex-7デバイスの正式サポート開始
1.5J	2016/12/21	データ・バッファを内部BRAMとし外部メモリを不要とするコア改良
1.6J	2017/6/7	ブリッジ回路をコアに内蔵しPCIe統合ブリッジと直結するコア改良
1.7J	2017/11/2	Linuxドライバ・アプリおよび2ch RAID0リファレンス・デザインを追加
1.8J	2018/7/18	4Kセクタ対応/SMARTコマンド/FLUSHコマンド/Shutdown機能を追加
1.9J	2019/1/7	オプション製品のFAT32-IP/exFAT-IP(開発中)紹介を追加
2.0J	2019/9/24	PCIeソフトIP内蔵版のNVMe-IPコア拡張製品リリース
2.1J	2020/2/1	Gen4対応のPCIeソフトIP内蔵版コア(NVMeG4-IP)リリース
2.2J	2020/8/27	ランダムアクセス対応のraNVMe-IPコアを新規ラインナップとして追加
2.3J	2020/12/1	NVMeG3-IP/NVMeG4-IPの情報を更新/修正
2.31J	2021/1/6	Page6のNVMeG4-IP-ZUP-GTHにて対応トランシーバをGTHに修正
2.4JX	2022/10/29	muNVMe-IPコアのラインナップ追加