dg_nvme_raidOx2_refdesign_g4 en.doc m

2-ch RAIDO (NVMe-IP for Gen4) reference design manual
Revl1l.0 16-Aug-22

1 Introduction

NVMe-IP Gend(Host) +
RAIDO controller

Stripe#0-#3
RAIDO capacity =
ﬁb / 2 x SSD capacity
Stripe#0 Stripe#1 ;|\Stripe size
Stripe#2 Stripe#3
SSD#0 SSD#1
RAIDO

Figure 1-1 RAIDO by 2 SSDs data format

RAIDO system uses multiple storages to extend total storage capacity and increase write/read
performance. Assumed that total number of devices connecting in RAIDO system is N, total
storage capacity of RAIDO is equal to N times of one device capacity. Write and read performance
of RAIDO are almost equal to N times of one device performance.

Data format of RAIDO is shown in Figure 1-1. Data stream of the host side is split into a small
stripe for transferring with one SSD at a time. Stripe size is the data size transferring with one SSD
before switching to other SSDs. In RAIDO reference design, stripe size is equal to 512-byte.

In this demo, two SSDs are connected in the system. It is recommended to use the same SSD
model for all channels to match the characteristic and achieve the best performance. As a result,
the total capacity is equal to two times of one SSD and the write/read performance are almost
equal to two times of one SSD performance.

The demo uses FIFO implemented by BlockRAM to be the buffer which has smaller size than
using DDR. Therefore, the buffer is sometimes not ready to transfer data when SSD pauses data
transmission for long time in Write process. Test performance in the demo is average speed, not
sustain rate. User can modify RAIDO reference design by increasing the numbers of SSD to
achieve the better performance and the bigger capacity. Furthermore, user can add DDR to have
larger data buffer in the system for supporting high-speed transferring as sustain rate with some
SSDs.

Before running the reference design, it is recommended to read NVMe-IP for Gen4 datasheet and
single channel demo from following link.

https://dgway.com/products/IP/NVMe-IP/dg_nvme ip data sheet g4 en.pdf
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip refdesign g4 en.pdf
https://dgway.com/products/IP/NVMe-IP/dg_nvmeg4ip instruction en.pdf

16-Aug-22 Page 1

https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_g4_en.pdf
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_g4_en.pdf
https://dgway.com/products/IP/NVMe-IP/dg_nvmeg4ip_instruction_en.pdf

dg_nvme_raidOx2_refdesign_g4_en.doc

2 Hardware overview

+ Control I/F of dglF typeS
+ Data I/F of dglF typeS

TestGen

NVMeRAIDOx2 Test
AXl4-Lite Serial
<> CPU |«
CpuClk
UserClk | PCleClk
LAxi2Reg
-
CtmRAM
dglF typesS x2
(Control)
Ctm
F
[mm————- | dglF typeS Iden I F
I [Control) }
| 1512 256 Integrated
| Y TxFF#0 || NUMeIP | B ock for 44—
for Gend
U2IP | 512 | ! o512 256 P PCle
FIFO %;ﬂ/—% RxFF#0 |-<— #0
512
I |
IP2U |t :
FIFO : % [lden IF |
| Ctm
' ' VF
| ! dalF types !
| et (Control) r
\ Integrated
! 1 | 512 256 | Nvmedp | BEORCT
| o——<p| TxFF#1 |—<p| for Gend
' [512 956 #1 SEE NVMe G
! #1
! RxFF#! (<t~
|
RAIDOx2]
' | NVMeRAIDOX2IP D

end
SSD #0

end
S5D#

Figure 2-1 RAIDOx2 demo system by using NVMe-IP for Gen4

Comparing to the NVMe-IP reference design without RAIDOx2, TestGen is modified to support
512-bit data bus, instead of 256-bit data bus. Also, CtmRAM and IdenRAM are extended from one
block for one SSD to two blocks for two SSDs. The control interface and the data interface of
NVMeRAIDOx2IP block are similar to NVMe-IP by using dglF typeS. In Write command, the data
is transferred from the left-hand side to the right-hand side while the data direction is reversed for
Read command. CPU and LAxi2Reg are integrated to be user control via Serial console. The user
can set the test parameters and monitor the test status via the console.

NVMeRAIDOx2IP is the top module of RAIDO block that consists of RAIDOx2, FIFOs, two
NVMe-IPs, and two PCle hard IPs. The top RAIDO is designed to have the same user interface as
NVMe-IP (dglIF typeS) for connecting with TestGen via two FIFOs — U2IPFIFO and IP2UFIFO.

16-Aug-22

Page 2

dg_nvme_raidOx2_refdesign_g4 en.doc m

The CPU firmware implements all commands supported by NVMe-IP. When running SMART
command or Identify command, CPU sends the command and the parameters of the command to
LAxi2Reg via AXI4-Lite I/F. After that, the command request is created to RAIDOx2 and NVMe-IP
via Control I/F of dglIF typeS. Finally, the SMART data or Identify controller and namespace data is
returned to CtmRAM or IdenRAM, respectively. CPU can decode and display the information of
SMART data and Identify data by reading the data from CtmRAM/IdenRAM via AXI4-Lite.

When running Write command, the command is still requested by CPU via Control I/F of dgIF
typeS to RAIDOx2 and NVMe-IP. While the data of Write command is generated by TestGen
module at maximum transfer speed to check the best write performance of the test system. The
data is always created and stored to U2IPFIFO when the FIFOs have free space. Next, RAIDOx2
block reads the data from U2IPFIFO to store to TxFF#0/TxFF#1, so the data is always available
for NVMe-IP to send Write data to NVMe SSD. On the contrary, the data direction is reversed
when running Read command. The command is still requested by CPU. NVMe-IP stores the read
data from NVMe SSD to RxFF#0/RxFF#1. After that, RAIDOx2 forwards the read data from
RxFF#0/RxFF#1 to IP2UFIFO. Finally, TestGen reads the data from IP2UFIFO and verify them
with the expected value. The verification result (pass or failed) is returned to CPU to be the test
result. CPU firmware measures the time usage when running Write command or Read command
to calculate the Write/Read performance for displaying as the test result on the console.

For operating with NVMe SSD by Gen4 speed, PCle hard IP is run at 250 MHz which is the
frequency of PCleClk. According to NVM-IP specification, user clock frequency (UserCIk) is
recommended to be higher or equal to PCleClk. However, RAIDO module has the overhead time
for switching the active NVMe-IP module. The overhead time is about 12.5%, so it is
recommended to set UserCIk to be higher or equal to 281.25 MHz (112.5% of 250 MHz). While
CPU system is mostly built by using its own clock which is individual and stable. Therefore,
LAxi2Reg must integrate clock-crossing domain logic for support different clock domain between
CPU system and Test logic.

More details of the hardware are described as follows.

16-Aug-22 Page 3

dg_nvme_raidOx2_refdesign_g4 en.doc m

2.1 TestGen

4 Wrte command

NN]-E +: Read command

|
Wr FIFO | WrFfWrEn
Control Logic 1

‘ﬁ;
(512x512) 512

Rd FIFO RdFfRdEnN

Control Logic

|

|

|

|

|

|

|

: Generator
| Register
|

|

|

|

|

|

|

|

|
| WiEWData | g0 et 51
TestData ® | |
| 512
| NVMe
| dg('gggfs RAIDOX2IP
Data | RdFfRdData
T H |
Verification | I 512 IP2UFIEO
|
|
|
|

.

Figure 2-2 TestGen interface

TestGen module is the test logic to send test data to NVMeRAIDOx2IP through U2IPFIFO
when operating Write command. On the other hand, the test data is applied to be the
expected value to verify the read data from NVMeRAIDOx2IP through IP2UFIFO when
operating Read command. Control logic asserts Write enable or Read enable to ‘1’ when the
FIFOs are ready. Data bandwidth of TestGen is matched to NVMeRAIDOx2IP by running at
the same clock and using the same data bus size. Therefore, U2IPFIFO and IP2UFIFO are
always ready for transferring data with NVMeRAIDOx2IP in Write and read command. As a
result, the test logic shows the best performance to write and read data with the SSD through
NVMeRAIDOX2IP.

Register file in the TestGen receives test parameters from user, i.e., total transfer size,
transfer direction, verification enable, and test pattern. To control transfer size, the counter
counts total amount of transferred data. The details of hardware logic within TestGen module
are shown in Figure 2-3.

16-Aug-22 Page 4

dg_nvme_raidOx2_refdesign_g4 en.doc m

|
I _ WrFFAFull |
: L’ L |
|
' R @ WIFAWED |
| FF | 'iTrans 2xFF .'I
I > |
| S
|
| ‘ J A Q RdFfEmpty |
WiPattSta ; O
:—'] - rEndSize CMP l :
|TrnLen|4?:]) Len) == - FF < RdFfRdEN >
| |
T e i
| RdPattStart | 1 > | :
attSta : Data rDataCnt : |
| } e Counier > pattem | Header i PWFFAData[511-0] |
| : Selector | Inserter : .'1
I } | RdFfRdData[511:0]
| | |
' ™ fTmAddr LFSR : ; |
I
: l _: DEC | Address » Counter ! | pattfai |
| TrnAddri47:0] } > Counter | CMP —I-:
|
: PattSel[2:0] } TestData '
I | Generator |
I

[Ep—

77 _TestGen

Figure 2-3 TestGen hardware

As shown in the right side of Figure 2-3, flow control signals of FIFO are WrFfAFull and
RAFfEmpty. When FIFO is almost full in write operation (WrFfAFull="1"), WrFfWrEn is
de-asserted to ‘0’ to pause data sending to FIFO. For read operation, when FIFO has data
(RAFfEmpty=‘0’), the logic reads data from FIFO to compare with the expected data by
asserting RAFfRdEN to “1°.

Two counters — Data counter and Address counter are designed in TestGen. Data counter
(rDataCnt) counts the amount of transferred data in Write command and Read command.
When total amount of transferred data is equal to the end size, set by user, write enable or
read enable of FIFO is de-asserted to ‘0’. Also, the Data counter (rDataCnt) are fed to be the
write data for Write command or the expected data for Read command. TestGen supports to
generate five patterns of test data, i.e., all-zero, all-one, 32-bit incremental data, 32-bit
decremental data, and LFSR counter, selected by Pattern Selector. When creating all-zero or
all-one pattern, every bit of data is fixed zero or one, respectively. While other patterns consist
of two data parts to create unique test data in every 512-byte data, as shown in Figure 2-4.

16-Aug-22 Page 5

dg_nvme_raidOx2_refdesign_g4 en.doc

0x000-0x00F
0x010-0x01F
0x020-0x02F
0x030-0x03F

DWO

DWA1

DW2

DW3

Ad512B
[31:0]

Ad512B

Ly [47:32]

PattD2[31:0]

PattD3[31:0]

PattD4[31:0]

PattD5[31:0]

PattD6[31:0]

PattD7[31:0]

PattD8[31:0]

PattD9[31:0]

PattD10[31:0]

PattD11[31:0]

PattD12[31:0]

PattD13[31:0]

PattD14[31:0]

PattD15[31:0]

0x1F0-0x1FF

PattD124[31 :O*DaltD 125[31:0]|PattD126[31:0]PattD127[31:0]

Figure 2-4 Test pattern format in each 512-byte data for Increment/Decrement/LFSR pattern

512-byte data consists of 64-bit header in Dword#0 and Dword#1 and the test data in
remaining words of 512-byte data (Dword#2 — Dword#127). The header is created by using
the address counter (rTrnAddr) which shows the address in 512-byte unit. The initial value of
rTrnAddr is set by user and it is increased when finishing transferring 512-byte data.
Remaining Dwords (DW#2 — DW#127) depends on pattern selector which may be 32-bit
incremental data, 32-bit decremental data, or LFSR counter. 32-bit incremental data is
implemented by using rDataCnt. The decremental data can be designed by connecting NOT
logic to rDataCnt. The LFSR pattern is designed by using LFSR counter. The equation of
LFSR is x"31 + x"21 + x + 1. To implement 512-bit LFSR pattern, the data is split to be two
sets of 128-bit data which uses the different start value as shown in Figure 2-5.

s
b31 b0 bG3 b40 b39 b32 b95 b80 b79 b64 b127 b120 b119 b96
| LBAAGdr31:0] ‘ LBAAddI31:8] ‘ LBAAGdrB[7:0] | LBAAdd[31:16] | LBAAddrB[15:0] ‘ LBAAddI[31:24] ‘ LBAAAIB[23:0] ‘
PattD0O PattD1 PattD2 PattD3
LFSR Eqg: ¥*31 +x"21 +x + 1
b159 b128 b191 b160 b223 b192 b255 b224
| PattD4(LFSR) ‘ PattD5(LFSR) PattDB(LFSR) ‘ PattD7(LFSR) |
! I LFSR Eq: x"31 + x"21 + x +1
h287 h256 b319 b288 b351 b320 b383 h352
| PattD8(LFSR) ‘ PattDI(LFSR) PattD10(LFSR) ‘ PattD11(LFSR) ‘
! I LFSR Eq: x"31 + x"21 + x + 1
b415 b384 bd47 bd416 b479 bdd48 b511 b480
| PattD12(LFSR) ‘ PattD13(LFSR) PattD14(LFSR) ‘ PattD15(LFSR) ‘

16-Aug-22

Figure 2-5 512-bit LFSR Pattern in TestGen

By using look-ahead technique, one cycle generates four 32-bit LFSR data or 128-bit data,
the same color in Figure 2-5. The start value of each data set consists of 16 bits of LBAAddr
(32-bit LBA address) and 16 bits of LBAAddrB (NOT logic of LBA address). Test data is fed to
be write data to the FIFO or the expected data for verifying with the read data from FIFO. Fall
flag is asserted to ‘1’ when data verification is failed. The timing diagram to write data to FIFO
is shown as follows.

Page 6

dg_nvme_raidOx2_refdesign_g4_en.doc m

WrPattStart || [

WrTrans | | “
WrFfAFull

rWrFfWrEn[O]/é(@ K@ @4

DataCnt/ oY 11 2)] N X“
/

1. 'WrTrans is asserted to 3. rDataCnt is increased 5 r'WrTrans and "WrFRWrEn are de-asserted to
17 after WrPattStart="1' when rWrFfWren="1' ‘0" when rDataCnt=EndSize and rWrFf\WrEn="1".
2. T'WrFfWrEn="1"when 4 rWrFfWrEn is de-asserted
MVrTrans="1" and WrFfAF ull="0". to ‘0’when WrFfAF ull="1".

Figure 2-6 Timing diagram of Write operation in TestGen

1) WrPattStart is asserted to ‘1’ for one clock cycle when user sets the register to start write
operation. In the next clock, rWrTrans is asserted to ‘1’ to enable the control logic for
generating write enable to FIFO.

2) Write enable to FIFO (rWrFfWrEn) is asserted to ‘1’ when two conditions are met.

First, rWrTrans must be asserted to ‘1’ to show the Write command is operating.
Second, the FIFO must not be full by monitoring WrFfAFull="0".

3) The write enable is fed to count total amount of data by rDataCnt in the Write command.

4) When FIFO is almost full (WrFfAFull="1"), the write process is paused by de-asserting
rWrFfWrEn to ‘0.

5) When rDataCnt is equal to the set value (rEndSize), rWrTrans is de-asserted to ‘0.
Meanwhile, rwWrFfWrEn is also de-asserted to ‘0’ to finish generating data.

For read operation, read enable of FIFO is controlled by empty flag of FIFO. Comparing to
write enable, the read enable is not stopped by total amount of data and not started by start
flag. The read enable is asserted to ‘1’ when FIFO is not empty. The data counter and the
address counter are increased when the read enable is asserted to ‘1’ to count total amount of
data and generate the header of expect value.

16-Aug-22 Page 7

dg_nvme_raidOx2_refdesign_g4_en.doc m

2.2 NVMeRAIDOx2IP

P | jm————= | 4 Control signal

————— Custom Cmd IF ¢: Data signal
(RAM)#0-1

Custom Cmd I/F
_______ (SubmQ/CompQ y#0-1

Iden I/F
(RAM)#0-1

LAXxi2Reg

RAIDOx2

dglF typeS State dglF typeS
(Control) M/C (Control) [' ' |
e #0-1

|

|

|

|

|

|

|

|

|

|

|

———— 256 |
512 —— P NVMelP Integrated :
|

|

|

|

|

|

|

u2IPFIFO !
(Write) ! 512
| Data #0-1 PCle

|
|
|
| - TxFF#0-1 Block for
|
- 1 : Switch =l
|
|
I
I
I
I

H for Gend

| IP2UFIFO |
: (Read) 512 -t

Figure 2-7 NVMeRAIDOx2IP hardware

Figure 2-7 shows the connections and the submodules inside NVMeRAIDOX2IP. The user
interface of NVMeRAIDOx2IP consists of control interface and 512-bit data interface while the
data interface of NVMe-IP is 256 bits. Therefore, four FIFOs (TxFF#0/#1 and RxFF#0/#1)
which are asymmetric FIFOs are connected between RAIDOx2 and NVMe-IPs. RAIDOx2
decodes the command request from control interface (by LAxi2Reg) and then creates the
request with the calculated parameters to control interface of two NVMe-IPs. Also, RAIDOx2
includes data switch to connect data interface of TestGen to one of two NVMe-IPs when
running Write command or Read command. Therefore, the write data of TestGen is stored to
two SSDs as RAIDO operation.

While the data interface of SMART command (Custom I/F) or Identify command (lden I/F) are
not mapped to RAIDOx2 module but mapped to CtmRAM and IdenRAM directly. Also, the
constant parameters of Custom I/F for running SMART command and Flush command are
set by LAxi2Reg directly. More details of each submodule are described as follows.

16-Aug-22 Page 8

dg_nvme_raidOx2_refdesign_g4 en.doc

2.2.1 NVMe-IP for Gen4

NVMe-IP implements NVMe protocol of the host side to access one NVMe SSD directly
without PCle switch connection. NVMe-IP supports six commands, i.e., Write, Read, Identify,
Shutdown, SMART, and Flush. NVMe-IP can connect with the Integrated Block for PCI
Express (PCle hard IP) directly. More details of the NVMe-IP are described in the datasheet.
https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data sheet en.pdf

2.2.2 Integrated Block for PCI Express
This block is the hard IP which is available in some Xilinx FPGAs. The maximum number of
SSDs connecting to one FPGA device is limited by the numbers of PCle hard IP. One
NVMe-IP connects to one PCle hard IP for controlling one NVMe SSD. More details of PCle
hard IP are described in following document.

PG213: UltraScale+ Devices Integrated Block for PCl Express
https://www.xilinx.com/products/intellectual-property/pcie4-ultrascale-plus.html#documentati
on

PG343: Versal ACAP Integrated Block for PCI Express
https://www.xilinx.com/products/intellectual-property/pcie-versal.html#documentation

The PCle hard IP is created by using IP wizard. It is recommended for user to select “PCle
Block Location” which is closed to the transceiver pin that connects to the SSD. To connect
two SSDs, two hard IPs with different location assignment are generated in the reference
design. Please see more details about the location of PCle hard IP and transceiver from
following document.

UG575: UltraScale and UltraScale+ FPGAs Packaging and Pinouts
https://www.xilinx.com/support/documentation/user quides/ug575-ultrascale-pkg-pinout.pdf

AMO013: Versal ACAP Packaging and Pinouts
https://www.xilinx.com/support/documentation/architecture-manuals/am013-versal-pkg-pino

ut.pdf

The example of PCle hard IP location on XCVC1902-VSVA2197 is shown in Figure 2-8.
Figure 22:VC1902 Banks in VSVA2197 Package

¢ Re-customize IP

GTY Quad 106 HDIO HDIO GTY Quad 206
Versal ACAP Integrated Block for PCI Express (1.0) | XoYs Bank 306 Bank 406 X1Y6
| colu AA AB BGIR)
| GTY’?;?;I 105 PCIE PCIE GTYqu:g 205
Component Name pcie_versal_0 | CC [L} (RCAL) Xoy2 X1y2 BF[R]
GTY Quad 104 GTY Quad 204
Basic Capabilities PFIDs PFBARs Legacy/MSICap Adv | X0Y4 ;g,:,ﬁ Mmc X1Y4
CB [L] (RCAL) BE[R]
Made | Adanced v | GTY Quad 103 GTY Quad 203
| X0Y3 cPM4 Mmc X1v3
Device / Port Type Root Port of PCI Express Root Complex v | CA[U BD [R] (RCAL)
—
I PCle Block Location | X1Y0 v ‘ | CPMA CPM4 PCIE GTY%”:; 202
X1Y0 | e BC [R] (RCAL
Link Parameters | . | — — R \. GTY %u:: 201
Maximum Link 9 x0v1 | Bank 502 Bank 503 XoY1 B8 [R]
Maximum Link Y2 PMCMIO/PMCDIO PMCMIO MRMAC G"gl”:g 200
| Bank 500 Bank 501 X0Yo BAR]
I
Figure 2-8 PCle Hard IP Pin location
16-Aug-22 Page 9

https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_en.pdf
https://www.xilinx.com/products/intellectual-property/pcie4-ultrascale-plus.html#documentation
https://www.xilinx.com/products/intellectual-property/pcie4-ultrascale-plus.html#documentation
https://www.xilinx.com/products/intellectual-property/pcie-versal.html#documentation
https://www.xilinx.com/support/documentation/user_guides/ug575-ultrascale-pkg-pinout.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am013-versal-pkg-pinout.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am013-versal-pkg-pinout.pdf

dg_nvme_raidOx2_refdesign_g4 en.doc m

2.2.3 Dual port RAM

Two dual port RAMs, CtmRAM and IdenRAM, store data from Identify command and SMART
command, respectively. IdenRAM is simple dual-port RAM which has one read port and one
write port. The data size of Identify command is 8 Kbytes, so IdenRAM size is 8 Kbytes.
NVMe-IP and LAxi2Reg have the different data bus size, 256 bits on NVMe-IP but 32 bits on
LAxi2Reg. Therefore, IdenRAM is asymmetric RAM that has the different bus size on Write
interface and Read interface. Also, NVMe-IP has double word enable to write only 32-bit data
in some cases. The RAM setting on Xilinx IP tool supports the write byte enable. The small
logic to convert double word enable to be write byte enable is designed as shown in Figure
2-9.

CtmRAM
/ldenRAM
web|[0] IdenWrDWER[O])/
web[1] < CtmRamWrDWER[0]
ﬁﬁﬁ{ﬁ% IdenWrEn/
web[4] - CtmRamWrEn
web[5] IdenWrDWER[1)/
webl[6] CtmRamWrDWEn[1] | NVMe-IP
webl[7] - for Gend
2 e
ng{gg} : IdenWrDWER[7)/
web[30] < CtmRamWrDWEnN([7]
web[31]
-

Figure 2-9 Byte write enable conversion logic

Bit[0] of WrDWERN with WrEn signal are the inputs to AND logic. The output of AND logic is fed
to bit[3:0] of IdenRAM byte write enable. Bit[1], [2], ..., [7] of WrDWEnN are applied to be
bit[7:4], [11:8], ..., [31:28] of IdenRAM write byte enable, respectively.

Comparing with ldenRAM, CtmRAM is implemented by true dual-port RAM (two read ports
and two write ports) with byte write enable. The small logic to convert double word enable of
custom interface to be byte write enable must be used, similar to IdenRAM. True dual-port
RAM is used to support the additional features when the customized custom command needs
the data input. To support SMART command, using simple dual port RAM is enough. Though
the data size returned from SMART command is 512 bytes, CtmRAM is implemented by
8Kbyte RAM for customized custom command.

2.2.4 FIFO
Two FIFOs are applied to interface one NVMe-IP with RAIDOx2, TxFF and RxFF. Both FIFOs
are asymmetric FIFO and has 32 Kbyte size. TxFF converts 512-bit data (RAIDOx2 data bus
size) to 256-bit data (NVMe-IP for Gen4 data bus size) while RxFF converts 256-bit data to
512-bit data.

16-Aug-22 Page 10

dg_nvme_raidOx2_refdesign_g4 en.doc m

2.2.5 RAIDOx?2
RAIDOX2 operation
RAIDOx2 Stripe#0
Control#0 (Command, Addr, Length (512 bytes)
Control State |« bt (' Lengt) p NVMelP _
g | M/IC | forGend |« p| Stripe#2
> TXFF#0 | .| #0
Dataﬂjm Data 256
- -7
510 RxFF#0 256 SSD#0
Stripe | | Stripe || Stripe Stripe#0 ;‘S%em
#3 #2 #1 || (512bytes) || yChSel | Control#1 CEBES
— _
%12 ™| Data NVMelP#1 |« »| Stripe#3
Data Swi | TXFF#1 [=
witch 512 256
|} 512 Data Data
-] 512 RxFF#1 |- 256 SSDi1

Figure 2-10 RAIDOx2 operation

RAIDOx2 consists of state machine and data switch for handling control interface and data
interface. After receiving new command request from LAxi2Reg, state machine calculates the
address and transfer length of each NVMe-IP by decoding user parameter inputs (set by
LAxi2Reg). Next, state machine generates command request with the valid address and
length to NVMe-IPs. Typically, the length to each NVMe-IP is about (the length from user/ 2).

Figure 2-10 shows the details of the data flow for RAIDOx2 operation. The stripe size is equal
to 512 bytes. The data input from user (TestGen) is split to 512-byte unit. After that, RAIDOx2
calculates the first active NVMe-IP and then transfers the first 512-byte data to it. Figure 2-10
shows the example of Write command when the first active NVMe-IP is Ch#0, so Stripe#0 is
stored to SSD#0 via NVMe-IP#0 and TxFF#0. Next, the active channel is toggled to Ch#1.
The next stripe (Stripe#1) is stored to SSD#1 via NVMe-IP#1 and TxFF#1. The active channel
is toggled until the last data is transferred.

The first active channel is determined by using LSB bit of the start address which is the
address of 512-byte data block. When LSB of the start address is equal to ‘0’, the first active
channel is Ch#0. Thus, the first active channel is Ch#1 for LSB="1".

There are many pipeline registers inside data switch logic. Therefore, there is overhead time
for switching the active channel before transferring 512-byte data. In the reference design, the
overhead time is about 1 clock cycle for each 512-byte transferring (512 bytes uses 8 clock
cycles of 512-bit data). As a result, the overhead time is about 12.5% (1 cycle/8 cycles). To
compensate the overhead time, clock frequency of RAIDOx2 must be set to 12.5% higher
than NVMe based clock. NVMe based clock for PCle Gen4 is equal to 250 MHz. The clock
frequency after compensating overhead time is at least 281.25 MHz (112.5% of 250 MHz). In
the reference design, 285 MHz is applied, so Write/Read performance of RAIDO operation is
almost equal to two times of one NVMe SSD performance.

The user interface of RAIDOx2 is shown in Table 2-1. Control and data interface are designed

to compatible to dglF typeS format. Please see more details of dglF typeS format from
NVMe-IP datasheet.

16-Aug-22 Page 11

dg_nvme_raidOx2_refdesign_g4 en.doc

Table 2-1 Signal description of RAIDOx2 (only User interface)

Signal Dir Description
Control I/F of dglIF typeS
RstB In Synchronous reset signal. Active low. De-assert to ‘1’ when CIk signal is stable
Clk In System clock for running RAIDOx2 and NVMe-IP. It is recommended to use the frequency

more than 281.25 MHz for PCle Gen4 to achieve the best performance. The minimum
requirement of Clk signal is the same as NVMe-IP (more than or equal to 250 MHz).

UserCmd[1:0] In User Command (000b: Identify, 001b: Shutdown, 010b: Write, 011b: Read,
100b: SMART, 110b: Flush, 101b/111b: Reserved)
UserAddr[47:0] In Start address to write or read RAIDO in 512-byte unit. It is recommended to set

UserAddr[3:0]=0000b to align 8 Kbyte which is page size for two SSDs (one SSD page size
is 4 Kbyte). Otherwise, write and read performance of some SSD models are reduced from
4Kbyte unaligned address.

UserLen[47:0] In Total transfer size to write/read SSD in 512 byte unit. Valid from 1 to (LBASize-UserAddr).

UserReq In Assert to ‘1’ to send the new command request and de-assert to ‘0’ after RAIDO starts the

operation by asserting UserBusy to ‘1. This signal can be asserted to ‘1’ when RAIDO is Idle
(UserBusy="0"). Command parameter (UserCmd, UserAddr, UserLen, and
CtmSubmDWO0-DW15) must be valid and stable during UserReg="1".

UserAddr and UserLen are inputs for Write/Read command while CtmSubmDWO0-DW15
are inputs for SMART/Flush command.

UserBusy Out | Asserted to ‘1’ when RAIDO is busy.

New request must not be sent (UserReq to ‘1’) when RAIDOQ is busy (UserBusy="1’).
LBASIze[47:0] Out | Total capacity of two SSDs in 512-byte unit. This value is valid after finishing Identify
command. It is recommended to run Identify command as the first command. Default value
is 0.

Note: LBASize of RAIDO is calculated from the SSD#0 capacity X 2.

LBAMode Out | LBA unit size of RAIDO. This signal is valid after finishing Identify command.

Default value is 0. ‘0’: LBA size = 512 byte, ‘1": LBA size = 4 Kbyte.

RAIDO uses 512-byte stripe size, so 4 Kbyte LBA size is not supported.

UserError Out | Error flag. Assert to ‘1’ when some bits of UserErrorType are not equal to 0.
The flag can be cleared to ‘0’ by asserting RstB to ‘0.
UserErrorType[0-1][31:0 Out | Error status, directly mapped from UserErrorType in each NVMe-IP. [0]-IP#0, [1]-IP#1.

Data I/F of dglIF typeS
UserFifowrCnt[15:0] In Write data counter of Receive FIFO. Used to check full status of FIFO. When full status is
detected, the returned data transmission from Read command may be paused.

If the size of FIFO data count is less than 16-bit, please fill ‘1’ to remained upper bit.

UserFifoWrEn Out | Asserted to ‘1’ to write data to Receive FIFO while running Read command.
UserFifowrData[511:0] Out | Write data bus of Receive FIFO. Valid when UserFifoWrEn="1".
UserFifoRdCnt[15:0] In Read data counter of Transmit FIFO. Used to check data size stored in FIFO. The

transmitted data packet for Write command may be paused when the counter shows empty
status. If the size of FIFO data count is less than 16-bit, please fill ‘0’ to remained upper bit.

UserFifoEmpty In The signal is unused.
UserFifoRdEn Out | Asserted to ‘1’ to read data from Transmit FIFO while running Write command.
UserFifoRdData[511:0] In Read data returned from Transmit FIFO.

Valid in the next clock after UserFifoRdEn is asserted to ‘1’

16-Aug-22 Page 12

dg_nvme_raidOx2_refdesign_g4_en.doc M

Timing diagram of RAIDOx2 module when running Write command is shown as follows.

+: RAIDO Input
2. stTransfer is run for 8 cycles for 6. rNxtChSel calculates the next channel to + RAIDO Qutput
transferring 512-byte data (8x512-bit data) select TxFAWrCnt for monitoring in stWaitData ¢ Internal signal
1. State changes from stWaitData to 8. Continue the next loop if UserFIFO 9. Go to stWaitFifo if
stTransfer when UserFIFO has enough data has enough data for the next transfer UserFIFO has not much data
and TxFIFO has enough free space

Write Command ‘ : 3 (2 3 i A ! i ! S : 3
rState stwaitReq; Yoo :st'l\(an?:gfer i i ol i stTralhsfer i 3 i . stWa:itFWo 3
Y/ N -~
UserFifoRdCnt[15:3] [#ai0; /% \\i Y E IR & ég’ P
TXFIWICNINXIChSell[15:4] _zmeT
A N T T\ N A 4 A T S A 4 N
rChSel[0] i N Y : : oo N P ESTX PN
A A S —
NxtChSel N G N T K TN e
UserFifoRdEn | | | ggj - Boycles] \I A N Bl B
1 1 1 [] 1 1 1 I 1 ! 1 I
UserFifoRdData[511:0] | | | 4 [Do} b1)(:S Y)(D8 }(D9)(:55;}(D14} D15,)(:
1 1 T 7 1 I 1 T I 1 1 I
S VO S M — Lol
TXFAWER[rChSel2] | | A4 1 /y Se—— \L BRI
P : : 1! I
TxFfWrData[ChSel[2]][511:0] ! /}y A X DO |)(:?;X D5 |)(D6 | X D7 X/ \X\DS)(:S;;X D13}) D14] X:

5

5. Eight data are forwarded to
TxFiwrData of active channel
with asserting TxFIWrEn

‘ 3. Asserts UserFifoRdEnN to read 8 data

7. The active channel changes to the
next channel at the end of stTransfer

4. UserFifoRdData is valid in the next
cycle after asserting UserFifoRdEn

Figure 2-11 RAIDOx2 timing diagram in Write command

When user sends Write command to RAIDO, data is forwarded from UserFIFO (U2IPFIFO)
to TXFIFO#0 (TxFF#0) or TXFIFO#1 (TxFF#1). One TxFIFO is active to transfer 512-byte
data at a time. After that, the active channel of NVMe is switched to the next channel for
transferring data, following RAIDO behavior.

1) stWaitData is the core state of RAIDOx2 module. First, it checks the remained transfer
size. The operation is finished when the remained transfer size is equal to 0. Otherwise,
UserFifoRdCnt and TxFfWrCnt are monitored to confirm that at least 512-byte data is
stored in U2IPFIFO and TxFIFO has at least 1024-byte free space. If FIFOs are ready,
the write operation is started.

Note:

i) TXFfWrCnt of two channels are fed to multiplexer to select the active channel.
Therefore, it has one clock latency, comparing to UserFifoRdCnt.

i) TXFfWrCnt is controlled by rNxtChSel which shows the next active channel for running
n “stTransfer”. After starting the first transfer loop, rNxtChSel is increased for scanning
free space size of the next active channel FIFO.

16-Aug-22 Page 13

dg_nvme_raidOx2_refdesign_g4 en.doc m

2) State machines changes to stTransfer to start forwarding the write data from user logic to
TXFIFO. This state is run for 8 clock cycles.

3) UserFifoRdEnN is asserted when the state is stTransfer, so it is asserted to ‘1’ for 8 clock
cycles to read 512-byte data from UserFIFO.

4) Read data (UserFifoRdData) is valid in the next cycle after asserting Read enable
(UserFifoRdEnN).

5) The data is forwarded to TxFIFO of the active channel, selected by rChSel[2] which is
two-clock latency signal of rChSel[0].

Note: rChSel[0] shows the active channel for transferring data in stTransfer state.

6) When running in stTransfer state, rNxtChSel calculates the next active channel from
rChSel[0]. rINxtChSel is applied to select the active channel for reading TxFfWrCnt of the
next transfer in stWaitData.

7) The active channel for transferring data (rChSel[0]) is increased after finishing 512-byte
data transferring in stTransfer state.

8) To reduce the overhead time for running the next transfer loop, UserFifoRdCnt is
monitored in stTransfer state. If read counter shows at least 2x512-byte data is stored in
FIFO, the new transfer loop will be started in the next cycle by changing to stWaitData
and then returning to step 1. Otherwise, the next state is stWaitFifo, described in step 9.

9) stWaitFIFO is designed to wait until the current data transferring is done and
UserFifoRdCnt is completely updated for monitoring. After waiting for three clock cycles,
the state changes to stWaitData to transfer the next 512-byte data or finish the operation.

16-Aug-22 Page 14

dg_nvme_raidOx2_refdesign_g4_en.doc

2. stTransfer is run for 8 cycles for
transferring 512-byte data (8x512-bit data)

B. rNxtChSel calculates the next channel to
select RxFRACnt for monitoring in stWaitData

1. State changes from stWaitData to
stTransfer when RxFIFO has enough data
and UserFIFO has enough free space

Read Command ‘

rState
UserFifoWrCnt[15:4]
RxFfRACnt[rNxtChSel][15:3]
rChSel[0]

rNxtChSel
RxFfRAEN[rChSel[0]]
RxFfRdData[rChSel[2]][511:0]
UserFifoWrEn

UserFifoWrData[511:0]

+: RAIDO Input
+: RAIDO Output
+: Internal signal

8. Continue the next loop if total data is
not transferred and FIFOs are ready

9. Go to stWaitEnd if total data
is completely transferred

— / ~——
J

st\«"‘;faitRe ; ist n:ri;fer i ; E ; slTra|§1sfer ; i ; : stWaQ‘tEnd
L IR EE -
AT AV T
1 1 1 I 1 1 1 1 1 1 1 ERN ! 1
L R N N 4 B AN N T N
2 IO S S S S - IS
B L W § oy LT) SR
[1 [I [l 1 1 1 1] pl ! : 1
: i N EX i/)KGDENHE 553 i : N : i ”3 . ‘
E— e —
: : : N S : : I ‘ ' !
P == el A T N T | I
1 | | A 1] i i |] i i
v /: Do Y D1 :)(:z DG;)(o7y /)Y D8} D9)(;55;)(D14)(D15)<:
| : N : e : : : 1 :
L L A/"‘ s AN s
o il o A |
; /3/ A \X Do)(:zix D5 |)(D6 | X o7 |)("\ o8)(:?X D13XD14X:
d
e

3. Asserts RxFfRdAEnN to read 8

data from the active channel

4. RxFfRdData is valid in
the next cycle after
asserting RxFfRdEn

UserFifoWrEn

5. Eight data are forwarded to
UserFifoWrData with asserting

7. The active channel changes to the
next channel at the end of stTransfer

Figure 2-12 Raid0x2 timing diagram in Read command

When user sends Read command to RAIDO, data is forwarded from RxFIFO#0 (RxFF#0) or
RxFIFO#1 (RxFF#1) to IP2UFIFO. Similar to Write command, one RxFIFO is active to
transfer 512-byte at a time. The active channel is switched to the next channel after finishing
512-byte data transferring, following RAIDO behavior.
1) stWaitData is the state to check the remained transfer length and FIFO status. In read
command, RxFfRdACnt and UserFifoWrCnt are monitored to confirm that at least 512-byte
data is stored in RxFIFO and IP2UFIFO has at least 1024-byte free space. The read
operation is started when both FIFO status are ready and there is remained transfer

length.
Note:

i) RXFfRACnt of two channels are fed to multiplexer to select the active channel.
Therefore, it has one clock latency, comparing to UserFifowrCnt.
i) RXFfRACnt is controlled by rNxtChSel which is the next active channel for running in

“stTransfer”.

16-Aug-22

Page 15

dg_nvme_raidOx2_refdesign_g4 en.doc m

2) State machines changes to stTransfer to start forwarding 512-byte read data from
RxFIFO to user logic by staying in this state for 8 clock cycles.

3) RxFfRdERN of the active channel, selected by rChSel[0], is asserted to ‘1’ when the state is
stTransfer. Thus, it is asserted for 8 clock cycles.

4) Read data (RxFfRdData) is valid in the next cycle after asserting Read enable
(RXFfRAERN).

5) The data of the active channel, selected by rChSel[2], is forwarded to UserFIFO.

Note: rChSel[2] is ChSel[0] signal with two-clock latency.

6) When running in stTransfer state, rNxtChSel calculates the next active channel from
rChSel[0]. rNxtChSel is applied to select the active channel for reading RxFfRdCnt which
is monitored in stWaitData.

7) The active channel for transferring data (rChSel[0]) is increased after finishing 512-byte
data transferring in stTransfer state.

8) If there is remained transfer length, the state changes to stTransfer to start new data
transferring, similar to step 2. Otherwise, the next state is stWaitEnd, described in step 9.

9) If all data are completely transferred, the state changes to stWaitEnd to wait until all
NVMe-IPs finish the operation by de-asserting Busy signal to ‘0’.

16-Aug-22 Page 16

dg_nvme_raidOx2_refdesign_g4 en.doc m

2.3 CPU and Peripherals

32-bit AXI4-Lite bus is applied to be the bus interface for CPU accessing the peripherals such
as Timer and UART. The test system of NVMe-IP is connected with CPU as a peripheral on
32-bit AXlI4-Lite bus for CPU controlling and monitoring. CPU assigns the different base
address and the address range to each peripheral for accessing one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. Therefore, the hardware logic must be designed to support AXI4-Lite bus standard
for CPU writing and reading. LAxi2Reg module is designed to connect with the CPU system
as shown in Figure 2-13.

¢« - Data I/F
CpuClk | UserClk + _ Control I/F
| Custom CmdI/F I~ 77777
(RAM) | CtmRAM
| - 1m0
| | |
| Register
SN i satd I N D0 Custom Cmd I/F |
32 | Async 32 ¢(SubmQ/CompQy, | |
A L UserReg |
x'| °9 | NvMe |
dglF typeS | RAIDOX2IP |
| 1 (Control)) : |
| |
| TestGen |
I
| < Parameter » TestGen :
| _ !
I
| LAxi2Reg

Figure 2-13 CPU and peripherals hardware

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXl4-Lite signals to be the simple register interface which has 32-bit data bus size, similar to
AXl4-Lite data bus size. Besides, AsyncAxiReg includes asynchronous logic to support clock
domain crossing between CpuClk domain and UserClk domain.

UserReg includes the register file of the parameters and the status signals to control the other

modules, i.e., CtmRAM, IdenRAM, NVMeRAIDOx2IP, and TestGen. More details of
AsyncAxiReg and UserReg are described as follows.

16-Aug-22 Page 17

dg_nvme_raidOx2_refdesign_g4 en.doc m

2.3.1 AsyncAxiReg

¢ Wrte access
¢ Read access
¢ Wr/Rd access

AsyncAxiReg

— Address |—— sg;:?gr Mﬁ-
LAXiAw Control - Address
-« wite) ||]
_ Register RegWr
‘7_LI-\XIW. Data f———_ Write I/F
| Control
NNV VTE (Write)
I
. Address ||
LAXIAF Control]
4———— (Read) ——P E—
Register ReaRd
Data Read I/F egRd”
LAXir* Control |
L (Read) ' '

Figure 2-14 AsyncAxiReq Interface

The signal on AXIl4-Lite bus interface can be split into five groups, i.e., LAXIAwW* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAXiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xInx/attachments/xInx/NewUser/34911/1/designing_a_custom_axi
slave revl.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. So, the
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e., Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-14. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock domain crossing registers. Similarly, Read
control I/F of AXI4-Lite bus are latched and transferred to be Read register interface. While
the returned data from Register Read I/F is transferred to AXI4-Lite bus by using clock
domain crossing registers. In register interface, RegAddr is shared signal for write and read
access. Therefore, it loads the address from LAxiAw for write access or LAXxiAr for read
access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction. Therefore, user cannot write and read the
register at the same time. The timing diagram of the register interface is shown in Figure 2-15.

16-Aug-22 Page 18

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_nvme_raidOx2_refdesign_g4_en.doc m

During read operation, RegAddr holds the + - AsyncAxiReg output
same value until RegRdValid is asserted to "1". ¢ - AsyncAxiReg input

E

ol VRN S
RegAddr[13:0] :)(AOEX EX m; % EX
0] YwooY T o
RegWiData[31:0] ::}(WD EX o
RegWByteEN[3:0] _YBeo) | | oo
RegWrEn rr
RegRdReq ; Ei |
RegRdValid /— /i’/ . (/5- :
: : : L ol
RegRdData[31:0] /| /i | iifoDOiX
/ ya

1. RegWrEn is asserted to *17
synchronous with RegAddr, RegWrData,

ul _ synchronous with RegRdData to
and RegWrByteEn for writing register

retum valid register data

3. RegRdValid is asserted to "1, ‘

2. RegRdReq is asserted to *17,
synchronous with RegAddr to
send read register request.

Figure 2-15 Regqister interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is
asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be 4-byte data enable. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave detects
RegRdReq asserted to start the read transaction. In read operation, the address value
(RegAddr) does not change until RegRdValid is asserted to ‘1’. Therefore, the address
can be used for selecting the returned data by using multiple levels of multiplexer.

3) Theread data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1°.
After that, AsyncAxiReg forwards the read value to LAXxir* interface.

16-Aug-22 Page 19

dg_nvme_raidOx2_refdesign_g4 en.doc

2.3.2 UserReg

Async
AxiReg

Figure 2-16 UserReq Interface

¢« - Data I/F
Ceodd | UserReg | + - Control I/F
e r "Register File |
g Address Reglstfer File dglF typeS
Decoder (Write) *‘WF
™ 0x 00000- _| _|_Custom Cmd I NVMe
RegWr* | Ox000FF. | (SubmQ) RAIDOX2IP
I 0x 00400~ | Custom Cmd VF |
| 0x004FF_ | | (CompQ)
" 0x00T00- - I
LO_)(@LFF_ Regl;terdMux I PTestGetn TestGen
= 0x 005002 i 1 fa_)_ __! arameter
| Ox005FF.
" 0x01000-
P | O0xO1FFE
RegRd” MOx70000- | o | __ __ _ _ | _idenlF _
4— | x17FFE (RAM)
M~ " la—t—————— e
| Ox18000- Custom Cmd I/F
| Ox1FFFF (RAM) it
e >

The address range to map to UserReg is split into six areas, as shown in Figure 2-16.

1) 0x00000 — OxO00FF

mapped to set the command with the parameters of
NVMeRAIDOx2IP and TestGen. This area is write-access only.

2) 0x00400 — Ox004FF

NVMe-IP. This area is write-access only.
3) 0x00100 — Ox001FF

area is read-access only.
4) 0x00500 — 0x005FF

(NVMe-IP). This area is read-access only.
5) 0x01000 — Ox01FFF

only.
6) 0x10000 — Ox17FFF

only.
7) 0x18000 — OX1FFFF

: mapped to set the parameters for custom command interface of
: mapped to read the status signals of NVMeRAIDOx2IP. This
: mapped to read the status of custom command interface
: mapped to read the status of TestGen. This area is read-access
: mapped to read data from ldenRAM. This area is read-access

: mapped to write or read data with custom command RAM

interface. This area supports write-access and read-access. The demo shows only read
access by running SMART command.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32-bit bus size. Therefore, write byte enable (RegWrByteEn) is
not applied in the test system and the CPU uses 32-bit pointer to set the hardware register.

To read register, three-step multiplexer selects the data to return to CPU by using the address.
The lower bit of RegAddr is fed to the submodule to select the active data from each
submodule. While the upper bit is applied in UserReg to select the returned data from each
submodule. Totally, the latency time of read data is equal to three clock cycles. Therefore,
RegRdValid is created by RegRdReq with asserting three D Flip-flops. More details of the
address mapping within UserReg module are shown in Table 2-2.

16-Aug-22

Page 20

dg_nvme_raidOx2_refdesign_g4 en.doc

DG

Table 2-2 Reqister Map

Address Register Name Description
Wr/Rd (Label in “nvmeraidOg4test.c”)
0x00000 — OxO00FF: Status signals of NVMeRAIDOx2IP and TestGen (Write access only)
BA+0x00000 User Address (Low) Reg [31:0]: Input to be bit[31:0] of start address in 512-byte unit
(USRADRL_INTREG) (UserAddr[31:0] of RAIDOx2)
BA+0x00004 User Address (High) Reg [15:0]: Input to be bit[47:32] of start address in 512-byte unit
(USRADRH_INTREG) (UserAddr[47:32] of RAIDOx2)
BA+0x00008 User Length (Low) Reg [31:0]: Input to be bit[31:0] of transfer length in 512-byte unit
(USRLENL_INTREG) (UserLen[31:0] of RAIDOx2)
BA+0x0000C User Length (High) Reg [15:0]: Input to be bit[47:32] of transfer length in 512-byte unit
(USRLENH_INTREG) (UserLen[47:32] of RAIDOx2)
BA+0x00010 User Command Reg [2:0]: Input to be user command (UserCmd of RAIDOx2)
(USRCMD_INTREG) (000b: Identify, 001b: Shutdown, 010b: Write RAID, 011b: Read RAID,
100b: SMART, 110b: Flush, 101b/111b: Reserved).
When this register is written, the command request is sent to RAIDOx2
to start the operation.
BA+0x00014 Test Pattern Reg [2:0]: Select test pattern
(PATTSEL_INTREG) 000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1, 100b-LFSR
BA+0x00020 NVMe Timeout Reg [31:0]: Input to be timeout value of all NVMe-IPs
(NVMTIMEOUT_INTREG) (TimeOutSet[31:0] of NVMe-IP)
0x00100 — 0x001FF: Status signals of NVMeRAIDOx2IP (Read access only)
BA+0x00100 User Status Reg [0]: UserBusy of RAIDOx2 (‘0’: Idle, ‘“1": Busy)
(USRSTS_INTREG) [1]: UserError of RAIDOX2 (‘0’: Normal, ‘1’: Error)
[2]: Data verification fail in TestGen (‘0’: Normal, “1’: Error)
BA+0x00104 Total device size (Low) Reg [31:0]: Mapped to LBASize[31:0] of RAIDOx2 to show RAIDO capacity
(LBASIZEL_INTREG)
BA+0x00108 Total device size (High) Reg [15:0]: Mapped to LBASize[47:32] of RAIDOX2 to show RAIDO capacity
(LBASIZEH_INTREG) [31]: Mapped to LBAMode of RAIDO
(BA+0x00110)- | User Error Type CH#0-#1 Reg 0x0110: NVMe-IP#0, 0x0114: NVMe-IP#1,
(BA+0x00117) | (USRERRTYPEO-1_INTREG) [31:0]: Mapped to UserErrorType of NVMe-IP
(BA+0x00120)- | PCle Status CH#0-#1 Reg 0x0120: NVMe-IP#0, 0x0124: NVMe-IP#1
(BA+0x00127) | (PCIESTSO0-1_INTREG) [0]: PCle linkup status from PCle hard IP (‘0’: No linkup, '1’: linkup)
[3:2]: Two lower bits to show PCle link speed. MSB is bit[16].
(000b: Not linkup, 001b: PCle Genl, 010b: PCle Gen2,
011b: PCle Gen3, 111b: PCle Gen4)
[7:4]: PCle link width status from PCle hard IP
(0001b: 1-lane, 0010b: 2-lane, 0100b: 4-lane, 1000b: 8-lane)
[13:8]: Current LTSSM State of PCle hard IP.
Please see more details of LTSSM value in PCle hard IP datasheet
[16]: The upper-bit to show PCle link speed of PCle hard IP.
Two lower bits are bit[3:2].
(BA+0x00130)- | Completion Status CH#0-#1 Reg 0x0130: NVMe-IP#0, 0x0134: NVMe-IP#1,
(BA+0x00137) | (COMPSTSO0-1_INTREG) [15:0]: Status from Admin completion
(AdmCompStatus[15:0] of NVMe-IP)
[31:16]: Status from 1/O completion
(I0CompStatus[15:0] of NVMe-IP)
(BA+0x00140)- | NVMe CAP CH#0-#1 Reg 0x0140: NVMe-IP#0, 0x0144: NVMe-IP#1,
(BA+0x00147) | (NVMCAPO-1 INTREG) [31:0]: Mapped to NVMeCAPReg[31:0] of NVMe-IP
(BA+0x00150)- | NVMe IP Test pin CH#0-#1 Reg 0x0150: NVMe-IP#0, 0x0154: NVMe-IP#1,
(BA+0x00157) | (NVMTESTPINO-1_INTREG) [31:0]: Mapped to TestPin[31:0] of NVMe-IP.

16-Aug-22

Page 21

dg_nvme_raidOx2_refdesign_g4 en.doc

DG

Address Register Name Description
Wr/Rd (Label in “nvmeraidOg4test.c”)
0x01000 — Ox01FFF: Status signals of TestGen (Read access only)
BA+0x01000 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1%t failure data in Read
(RDFAILNOL_INTREG) command
BA+0x01004 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1% failure data in Read
(RDFAILNOH_INTREG) command
BA+0x01008 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen module
(CURTESTSIZEL_INTREG)
BA+0x0100C Current test byte (High) Reg [24:0]: Bit[56:32] of the current test data size in TestGen module
(CURTESTSIZEH_INTREG)
(BA+0x01200)- Expected value Word0-15 Reg 512-bit of the expected data at the 15 failure data in Read command
(BA+0x0123F) (EXPPATWO-W15_INTREG) 0x1200: Bit[31:0], 0x1204: Bit[63:32], ..., 0x123C: Bit[511:480]
(BA+0x01400)- Read value Word0-7 Reg 512-bit of the read data at the 15! failure data in Read command
(BA+0x0143F) (RDPATWO0-W15_INTREG) 0x1400: Bit[31:0], 0x1404: Bit[63:32], ..., 0x143C: Bit[511:480]
0x00400 — 0XO0FFF: Custom command of NVMeRAIDOx2IP
(BA+0x00400)- | Custom Submission Queue [31:0]: Submission queue entry of SMART and Flush command.
(BA+0x0047F) CH#0—#1 Reg Input to be CtmSubmDWO0-DW15 of NVMe-IP#0-#1 successively.
Wr (CTMSUBMQO-1_STRUCT) 0x400: DWO, 0x404: DW1, ..., 0x43C: DW15 of NVMe-IP#0
0x440: DWO, 0x444: DW1, ..., 0x47C: DW15 of NVMe-IP#1
(BA+0x00500)- | Custom Completion Queue [31:0]: CtmCompDWO0-DW3 output from NVMe-IP#0-#1 successively.
(BA+0x0051F) CH#0—#1 Reg 0x500: DWO, 0x504: DW1, ..., 0x50C: DW3 of NVMe-IP#0
Rd (CTMCOMPQO-1_STRUCT) 0x510: DWO, 0x514: DW1, ..., 0x51C: DW3 of NVMe-IP#1
BA+0x00800 IP Version Reg [31:0]: IP version number (IPVersion[31:0] of NVMe-IP)
Rd (IPVERSION_INTREG)
0x10000 — Ox1FFFF: Identify RAM and Custom RAM
(BA+0x10000) — | Identify Controller Data CH#0-#1 | 0x10000-0x10FFF: 4Kbyte Identify controller data of NVMe-IP#0
(BA+0x13FFF) 0x11000-0x11FFF: 4Kbyte Identify namespace data of NVMe-IP#0
Rd (IDENCTRLO-1_CHARREG/ 0x12000-0x12FFF: 4Kbyte Identify controller data of NVMe-IP#1
IDENNAMEO-1_CHARREG) 0x13000-0x13FFF: 4Kbyte Identify namespace data of NVMe-IP#1
(BA+0x18000) — | Custom command Ram CH#0-#1 | 0x18000-0x19FFF: NVMe-IP#0,
(BA+0x1BFFF) 0x1A000-0x1BFFF: NVMe-IP#1
Wr/Rd (CTMRAMO-1_CHARREG) 8Kbyte CtmRAM interface of NVMe-IP#0-#1.

Used to store 512-byte data output from SMART Command.

16-Aug-22

Page 22

dg_nvme_raidOx2_refdesign_g4 en.doc m

3 CPU Firmware

3.1 Test firmware (nvmeraidOg4test.c)

After system boot-up, CPU runs following steps to finish the initialization process.

1)
2)
3)
4)

5)

CPU initializes its peripherals such as UART and Timer.

CPU waits until PCle connection links up (PCIESTS0/1_INTREG[0]="1").

CPU waits until NVMeRAIDOx2 completes initialization process
(USRSTS_INTREGIO0]='0’). If some errors are found, the process stops with displaying the
error message.

CPU displays PCle link status (the number of PCle lanes and the PCle speed) by reading
PCIESTSO0/1_INTREG[16:2].

CPU displays the main menu. There are six menus for running six commands with
RAIDOx2, i.e., Identify, Write, Read, SMART, Flush, and Shutdown.

More details of each command are described as follows.

3.1.1

Identify command

The step to operate Identify command is described as follows.

1)

2)

3)

Set USRCMD_INTREGJ[2:0]=000b to send ldentify command request to NVMeRAIDOx2.
After that, busy flag of NVMeRAIDOx2 (USRSTS_INTREG|0]) changes from ‘0’ to ‘1.
CPU waits until the operation is completed or some errors are found by monitoring
USRSTS_INTREGJ[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. Next, the data from
Identify command of two NVMe-IPs are stored in IdenRAM.

Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPEO/1_INTREG[31:0].
Finally, the process is stopped.

After busy flag (USRSTS_INTREGIO0]) is de-asserted to ‘0’, CPU displays some
information decoded from IdenRAM (IDENCTRLO/1_INTREG) such as SSD model name.
Also, RAIDOx2 capacity (LBASIZEL/H_INTREG) from NVMeRAIDOx2 output is read and
displayed on the console. Finallyy, CPU checks LBA Size of RAIDOx2
(LBASIZEH_INTREG[31]). If LBA Size of RAIDOx2 is 4Kbyte which is not supported by
RAIDOx2, the process is stopped and the error message is displayed.

16-Aug-22 Page 23

dg_nvme_raidOx2_refdesign_g4 en.doc m

3.1.2

Write/Read command

The step to operate Write/Read command is described as follows.

1)
2)

3)

4)

5)

3.1.3

Receive start address, transfer length, and test pattern from Serial console. If some inputs
are invalid, the operation is cancelled.

Get all inputs and then set to USRADRL/H_INTREG, USRLENL/H_INTREG, and
PATTSEL _INTREG.

Set USRCMD_INTREG]J2:0]=010b for Write command or 011b for Read command. After
that, the new command request is sent to NVMeRAIDOx2 for running Write command or
Read command. Busy flag (USRSTS_INTREG[0]) changes from ‘0’ to ‘1.

CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring USRSTS_INTREG[2:0].

Bit[0] is de-asserted to ‘0’ when command is completed.

Bit[1] is asserted to ‘1’ when some errors are detected. After that, the error message is
displayed on the console to show the error details, decoded from
USRERRTYPEO/1_INTREGJ[31:0]. Finally, the process is stopped.

Bit[2] is asserted to ‘1’ when data verification is failed. The verification error message is
displayed on the console to show the error details. However, CPU is still running until the
operation is done or user presses any key(s) to cancel operation.

While running the operation, current transfer size read from CURTESTSIZEL/H_INTREG
is displayed every second.

After busy flag (USRSTS_INTREGIO]) is de-asserted to ‘0’, CPU calculates and displays
the test result on the console, i.e., total time usage, total transfer size, and transfer speed.

SMART Command,

The step to operate SMART command is described as follows.

1)
2)

3)

4)

Set 16 Dwords of Submission queue entry (CTMSUBMQO/1_STRUCT) to be SMART
command value.

Set USRCMD_INTREG[2:0]=100b to send SMART command request to NVMeRAIDOx2.
After that, busy flag (USRSTS_INTREG|0]) changes from ‘0’ to ‘1’

CPU waits until the operation is completed or some errors are found by monitoring
USRSTS_INTREG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, the data returned from
SMART command is stored to CtmRAM.

Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPEO/1_INTREGJ[31:0].
Finally, the process is stopped.

After busy flag (USRSTS_INTREGIO]) is de-asserted to ‘0’, CPU decodes SMART
command information from CtmRAM (CTMRAMO/1_CHARREG), i.e., Remaining Life,
Percentage Used, Temperature, Total Data Read, Total Data Written, Power On Cycles,
Power On Hours, and Number of Unsafe Shutdown.

More details of SMART log are described in NVM Express Specification.
https://nvmexpress.org/resources/specifications/

16-Aug-22 Page 24

https://nvmexpress.org/resources/specifications/

dg_nvme_raidOx2_refdesign_g4 en.doc m

3.1.4

Flush Command

The step to operate Flush command is described as follows.

1)
2)

3)

3.1.5

Set 16 Dwords of Submission queue entry (CTMSUBMQO/1_STRUCT) to be Flush
command value.

Set USRCMD_INTREGJ2:0]=110b to send Flush command request of NVMeRAIDOx2.
After that, busy flag (USRSTS_INTREG[O0]) changes from ‘0’ to ‘1’.

CPU waits until the operation is completed or some errors are found by monitoring
USRSTS_INTREG[1:0].

Bit[O] is de-asserted to ‘0’ when command is completed. After that, CPU returns to the main
menu.

Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPEO/1_INTREGJ[31:0].
Finally, the process is stopped.

Shutdown Command

The step to operate Shutdown command is described as follows.

1)

2)

3)

Set USRCMD_INTREG[2:0]=001b to send Shutdown command request of
NVMeRAIDOx2. After that, busy flag (USRSTS_INTREGJ0]) changes from ‘0’ to ‘1’

CPU waits until the operation is completed or some errors are found by monitoring
USRSTS_INTREGJ[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, the CPU goes to the
next step.

Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPEO/1_INTREG[31:0].
Finally, the process is stopped.

After busy flag (USRSTS_INTREG|O0]) is de-asserted to ‘0’, all SSDs and all NVMe-IPs
change to inactive status. The CPU cannot receive new command from user. The user
must power off the test system.

16-Aug-22 Page 25

DG

dg_nvme_raidOx2_refdesign_g4 en.doc

3.2 Function list in Test firmware

int exec_ctm(unsigned int user_cmd)

Parameters | user_cmd: 4-SMART command, 6-Flush command
Return value [0: No error, -1: Some errors are found in NVMeRAIDOx2
Description Run SMART command or Flush command, following in topic 3.1.3

(SMART Command,) and 3.1.4 (Flush Command).

unsigned long

long get_cursize(void)

Parameters | None
Return value | Read value of CURTESTSIZEH/L INTREG
Description Read CURTESTSIZEH/L_INTREG and return read value as function

result.

int get param

userin_struct* userin)

Parameters

userin: Three inputs from user, i.e., start address, total length in 512-byte
unit, and test pattern

Return value

0: Valid input, -1: Invalid input

Description

Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

void iden_dev(void)

Parameters [None

Return value [None

Description Run Identify command, following in topic 3.1.1 (Identify command).

int setctm_flush(void)

Parameters None

Return value | 0: No error, -1: Some errors are found in NVMeRAIDOx?2

Description Set Flush command to CTMSUBMQO/1_STRUCT and call exec_ctm
function to start Flush command.

int setctm_smart(void)

Parameters | None
Return value | 0: No error, -1: Some errors are found in NVMeRAIDOx2
Description Set SMART command to CTMSUBMQO0/1_STRUCT and call exec_ctm

function to start SMART command. Finally, decode and display SMART
information on the console

16-Aug-22

Page 26

dg_nvme_raidOx2_refd

DG

esign_g4_en.doc

void show_error(void)
Parameters | None
Return value | None
Description Read USRERRTYPEO/1_INTREG, decode the error flag, and display

error message following the error flag.

void show pci

estat(void)

Parameters | None
Return value | None
Description Read PCIESTSO0/1_INTREG until the read value from two read times is

stable. After that, display the read value on the console.

void show result(void)

Parameters | None
Return value | None
Description Print total size by calling get_cursize and show_size function. After that,

calculate total time usage from global parameters (timer_val and
timer_upper_val) and display in usec, msec, or sec unit. Finally, transfer
performance is calculated and displayed in MB/s unit.

void show size(unsigned long long size input)

Parameters | size input: transfer size to display on the console
Return value | None
Description Calculate and display the input value in Mbyte, Gbyte, or Thyte unit

void show sm

art_hex16byte(volatile unsigned char *char_ptr)

Parameters | *char_ptr: Pointer of 16-byte SMART data
Return value | None
Description Display 16-byte SMART data as hexadecimal unit.

void show sm

art_int8byte(volatile unsigned char *char_ptr)

Parameters | *char_ptr: Pointer of 8-byte SMART data
Return value | None
Description | When the input value is less than 4 billion (32-bit), display 8-byte SMART

data as decimal unit. Otherwise, display overflow message.

void show sm

art_size8byte(volatile unsigned char *char_ptr)

Parameters | *char_ptr: Pointer of 8-byte SMART data
Return value | None
Description Display 8-byte SMART data as GB or TB unit. When the input value is
more than limit (500 PB), the overflow message is displayed instead.
16-Aug-22 Page 27

dg_nvme_raidOx2_refd

DG

esign_g4_en.doc

void show_vererr(void)

Parameters | None
Return value | None
Description Read RDFAILNOL/H_INTREG (error byte address),

EXPPATWO-W7_INTREG (expected value), and
RDPATWO-W7_INTREG (read value) to display verification error details
on the console.

void shutdown dev(void)

Parameters [None

Return value | None

Description Run Shutdown command, following in topic 3.1.5 (Shutdown Command)

int wrrd_dev(u

nsigned int user_cmd)

Parameters | user cmd: 2-Write command, 3-Read command
Return value | 0: No error, -1: Receive invalid input or some errors are found.
Description Run Write command or Read command, following in topic 3.1.2
(Write/Read command)
16-Aug-22 Page 28

dg_nvme_raidOx2_refdesign_g4_en.doc M

4 Example Test Result

The example test result when running RAIDO demo system by using two 1 TB WD BLACK SN850
SSDs is shown in Figure 4-1.

Gen4

Read

0 2000 4000 6000 8000 10000
MB/s

Figure 4-1 Performance of 2-ch RAIDO demo by using two 1TB WD BLACK SN850 SSDs

When running 2-ch RAIDO with 2 NVMe Gen4 SSDs, write performance is about 9,600 Mbyte/sec

and read performance is about 8,500 Mbyte/sec. Test pattern is LSFR and transfer size is 64
Gbytes.

Note: By customizing the IP to increase the buffer size to be 1 Mbyte instead of 256 Kbyte, the
read performance is increased. By using two 1 TB WD BLACK SN850 SSDs, the read
performance is about 12,400 Mbyte/sec.

16-Aug-22 Page 29

dg_nvme_raidOx2_refdesign_g4_en.doc M

5 Revision History

Revision Date Description

1.0 16-Aug-22 Initial version release

Copyright: 2022 Design Gateway Co,Ltd.

16-Aug-22 Page 30

