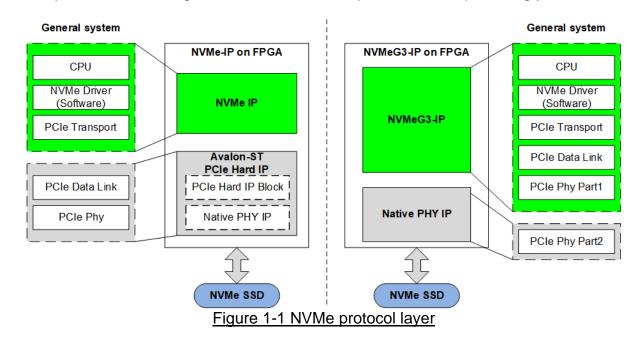


NVMe-IP with PCIe Gen3 Soft IP reference design manual

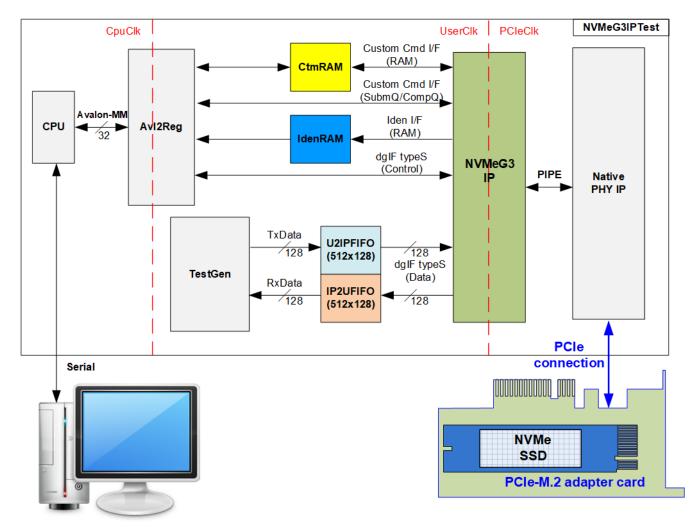

Rev1.0 30-Apr-20

1 NVMe

NVM Express (NVMe) defines the interface for the host controller to access solid state drives (SSD) by PCI Express. NVM Express optimizes the process to issue command and completion by using only two registers (Command issue and Command completion). Besides, NVMe supports parallel operation by supporting up to 64K commands within single queue. 64K command entries improves transfer performance for both sequential and random access.

In PCIe SSD market, two standards are used, i.e. AHCI and NVMe. AHCI is the older standard to provide the interface for SATA hard disk drive while NVMe is optimized for non-volatile memory like SSD. The comparison between both AHCI and NVMe protocol in more details is described in "A Comparison of NVMe and AHCI" document.

https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf



The example of NVMe storage device is shown in <u>http://www.nvmexpress.org/products/</u>.

DG NVMe-IP is the NVMe host controller to access NVMe SSD without using CPU and external memory, as shown in the left side of Figure 1-1. The low-level protocol of NVMe-IP system uses Avalon-ST PCIe Hard IP, so the maximum SSD for connecting to FPGA is limited by the number of PCIe Hard IP. Comparing to the right side of Figure 1-1, NVMeG3-IP designs most layers by pure-hardwired logic. Only a part of Physical layer is designed by using Native PHY IP which implemented by Intel Transceiver with the logic. So, the maximum SSD for connecting to FPGA is limited by the number of Transceiver instead of PCIe Hard IP. However, using NVMeG3-IP uses much logic resource to implement many layers comparing with NVMe-IP. It is recommended to use NVMe-IP firstly if the FPGA can fit with the system requirement. Otherwise, NVMeG3-IP must be used instead to support the big system which needs to connect many NVMe SSDs. The user interface of NVMe-IP and NVMeG3-IP is similar.

2 Hardware overview

Figure 2-1 NVMeG3-IP demo hardware

User interface of NVMeG3-IP and NVMe-IP are similar, so all modules of user interface such as TestGen and CPU system in NVMeG3IPTest are similar to NVMe-IP reference design. The different module is PCIe interface which using Native PHY IP instead of Avalon-ST PCIe hard IP, as shown in Figure 2-1.

This document describes only the modification point of NVMeG3-IP reference design from NVMe-IP reference design. Please see more details of the user interface in NVMe-IP reference design document, provided on our website.

https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_intel_en.pdf

In NVMe-IP reference design document, it describes the details of the logic design with timing diagram of TestGen, AvI2Reg, RAM, and FIFO.

In NVMeG3-IP reference design, there are the status and test signals which is the output of MAC layer within NVMeG3-IP, i.e. MACTestPin and MACStatus. So, these signals are mapped to the CPU for displaying the debug message when some problems are found. UserReg within AvI2Reg is slightly modified to read these signals by CPU, as shown in Table 2-1.

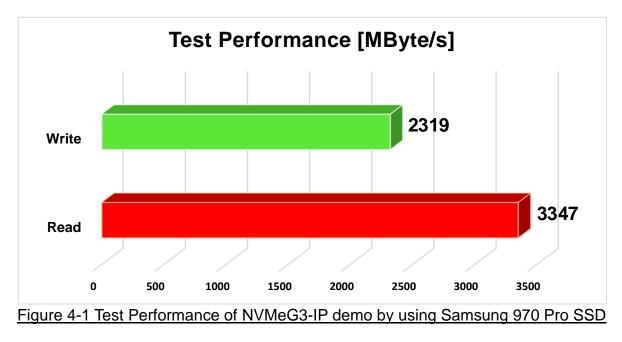
Table 2-1 Register Map

Address	Register Name	Description
Rd/Wr	(Label in the "nvmeg3iptest.c")	
		signals of NVMeG3-IP and TestGen (Write access only)
BA+0x0000	User Address (Low) Reg	[31:0]: Input to be start address as 512-byte unit
	(USRADRL_REG)	(UserAddr[31:0] of dgIF typeS)
BA+0x0004	User Address (High) Reg	[15:0]: Input to be start address as 512-byte unit
	(USRADRH_REG)	(UserAddr[47:32] of dgIF typeS)
BA+0x0008	User Length (Low) Reg	[31:0]: Input to be transfer length as 512-byte unit
	(USRLENL_REG)	(UserLen[31:0] of dgIF typeS)
BA+0x000C	User Length (High) Reg	[15:0]: Input to be transfer length as 512-byte unit
	(USRLENH_REG)	(UserLen[47:32] of dgIF typeS)
BA+0x0010	User Command Reg	[2:0]: Input to be user command (UserCmd of dgIF typeS for NVMeG3-IP)
	(USRCMD_REG)	"000": Identify, "001": Shutdown, "010": Write SSD, "011": Read SSD,
		"100": SMART, "110": Flush, "101"/"111": Reserved
1		When this register is written, the command request is sent to NVMeG3-IP to
		start the operation.
BA+0x0014	Test Pattern Reg	[2:0]: Select test pattern
	(PATTSEL_REG)	"000"-Increment, "001"-Decrement, "010"-All 0, "011"-All 1, "100"-LFSR
BA+0x0020	NVMe Timeout Reg	[31:0]: Timeout value of NVMeG3-IP
	(NVMTIMEOUT_REG)	(TimeOutSet[31:0] of NVMeG3-IP)
	0x0100 – 0x01FF: Status	signals of NVMeG3-IP and TestGen (Read access only)
BA+0x0100	User Status Reg	[0]: UserBusy of dgIF typeS ('0': Idle, '1': Busy)
	(USRSTS_REG)	[1]: UserError of dgIF typeS ('0': Normal, '1': Error)
		[2]: Data verification fail ('0': Normal, '1': Error)
BA+0x0104	Total disk size (Low) Reg	[31:0]: LBASize0[31:0] output from NVMeG3-IP
	(LBASIZEL_REG)	
BA+0x0108	Total disk size (High) Reg	[15:0]: LBASize0[47:32] output from NVMeG3-IP
	(LBASIZEH_REG)	[31]: LBAMode output from NVMeG3-IP
BA+0x010C	User Error Type Reg	[31:0]: User error status
	(USRERRTYPE_REG)	(UserErrorType[31:0] of dgIF typeS)
BA+0x0110	PCIe Status Reg	[7:0]: Unused for NVMeG3-IP
	(PCISTS_REG)	[15:8]: MACStatus output from NVMeG3-IP
BA+0x0114	Completion Status Reg	[15:0]: Status from Admin completion (AdmCompStatus[15:0] of NVMeG3-IP)
	(COMPSTS_REG)	[31:16]: Status from I/O completion (IOCompStatus[15:0] of NVMeG3-IP)
BA+0x0118	NVMe CAP Reg	[31:0]: NVMeCAPReg[31:0] output from NVMeG3-IP
	(NVMCAP_REG)	
BA+0x0120	NVMe Test pin Reg	[31:0]: TestPin[31:0] output from NVMeG3-IP
	(NVMTESTPIN_REG)	
BA+0x0124	MAC Test pin (Low) Reg	[31:0]: MACTestPin[31:0] output from NVMeG3-IP
	(MACTESTPINL_REG)	
BA+0x0128	MAC Test pin (High) Reg	[31:0]: MACTestPin[63:0] output from NVMeG3-IP
	(MACTESTPINH_REG)	

Address	Register Name	Description
Rd/Wr	(Label in the "nvmeg3iptest.c")	
		nals of NVMeG3-IP and TestGen (Read access only)
BA+0x0130	Expected value Word0 Reg	[31:0]: Bit[31:0] of the expected data at the 1 st failure data in Read
	(EXPPATW0_REG)	command
BA+0x0134	Expected value Word1 Reg	[31:0]: Bit[63:32] of the expected data at the 1 st failure data in Read
	(EXPPATW1_REG)	command
BA+0x0138	Expected value Word2 Reg	[31:0]: Bit[95:64] of the expected data at the 1st failure data in Read
	(EXPPATW2_REG)	command
BA+0x013C	Expected value Word3 Reg	[31:0]: Bit[127:96] of the expected data at the 1st failure data in Read
	(EXPPATW3_REG)	command
BA+0x0140	Read value Word0 Reg	[31:0]: Bit[31:0] of the read data at the 1 st failure data in Read command
	(RDPATW0_REG)	
BA+0x0144	Read value Word1 Reg	[31:0]: Bit[63:32] of the read data at the 1 st failure data in Read command
	(RDPATW1_REG)	
BA+0x0148	Read value Word2 Reg	[31:0]: Bit[95:64] of the read data at the 1 st failure data in Read command
	(RDPATW2_REG)	
BA+0x014C	Read value Word3 Reg	[31:0]: Bit[127:96] of the read data at the 1 st failure data in Read command
	(RDPATW3_REG)	
BA+0x0150	Data Failure Address(Low) Reg	[31:0]: Bit[31:0] of the byte address of the 1 st failure data in Read command
	(RDFAILNOL_REG)	
BA+0x0154	Data Failure Address(High) Reg	[24:0]: Bit[56:32] of the byte address of the 1 st failure data in Read
DA 0.0450	(RDFAILNOH_REG)	command
BA+0x0158	Current test byte (Low) Reg	[31:0]: Bit[31:0] of the current test data size in TestGen module
BA+0x015C	(CURTESTSIZEL_REG)	[24:0]: Dit[E6:22] of the ourrent toot data size of TootCon module
DA+0x015C	Current test byte (High) Reg (CURTESTSIZEH_REG)	[24:0]: Bit[56:32] of the current test data size of TestGen module
		ommand of NVMeG3-IP, IdenRAM, and Custom RAM)
BA+0x0200-	Custom Submission Queue Reg	[31:0]: Submission queue entry of SMART and Flush command.
BA+0x0200-	Custom Submission Queue Neg	Input to be CtmSubmDW0-DW15 of NVMeG3-IP.
Wr	(CTMSUBMQ_REG)	0x200: DW0, 0x204: DW1,, 0x23C: DW15
BA+0x0300-	Custom Completion Queue Reg	[31:0]: CtmCompDW0-DW3 output from NVMeG3-IP.
BA+0x030F		0x300: DW0, 0x304: DW1,, 0x30C: DW3
Rd	(CTMCOMPQ_REG)	
BA+0x0800	IP Version Reg	[31:0]: IP version number (IPVersion[31:0] of NVMeG3-IP)
Rd	(IPVERSION_REG)	
BA+0x2000-	Identify Controller Data	4Kbyte Identify Controller Data Structure
BA+0x2FFF		
Rd	(IDENCTRL_REG)	
BA+0x3000-	Identify Namespace Data	4Kbyte Identify Namespace Data Structure
BA+0x3FFF		
Rd	(IDENNAME_REG)	
BA+0x4000-	Custom command Ram	Connect to 8K byte CtmRAM interface.
BA+0x5FFF		Used to store 512-byte data output from SMART Command.
Wr/Rd	(CTMRAM_REG)	

3 CPU Firmware

CPU Firmware on NVMeG3-IP reference design is slightly modified from NVMe-IP reference design in PCIe initialization sequence. The step to check PCIe link up signal is removed in NVMeG3-IP. After reset sequence is finished, the IP starts the initialization process by running the following steps.


- 1) CPU initializes UART and Timer parameters.
- CPU waits until IP completes PCIe and NVMe initialization process by monitoring IP busy flag (USRSTS_REG[0]='0'). When some errors are found, the process stops and displays the error message.
- 3) CPU displays the main menu. There are six menus for running six commands, i.e. Identify, Write, Read, SMART, Flush, and Shutdown.

The details of CPU firmware to operate all commands are similar to the sequence described in NVMe-IP reference design which are described in NVMe-IP reference design document.

4 Example Test Result

The example test result when running demo system by using 512 GB Samsung 970 Pro is shown in Figure 4-1.

By using PCIe Gen3 on Arria10 GX board, write performance is about 2300 Mbyte/sec and read performance is about 3350 Mbyte/sec.

5 Revision History

Revision	Date	Description
1.0	30-Apr-20	Initial Release

Copyright: 2020 Design Gateway Co,Ltd.