
dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 1

NVMe-IP Linux reference design manual
Rev1.0 15-Feb-18

1 Introduction

To design the hardware in FPGA, there are many design solutions for user application. First
solution is using pure hardware logic without OS like NVMe-IP reference design (as shown in the
left side of Figure 1-1). System without OS, the design uses less FPGA resources, suitable for
simple design. User controls hardware system through hardware interfaces such as DIPSW or
small CPU like NiosII which running the firmware as Baremetal OS to process user command.

Second solution is using hardware logic with OS like this reference design (as shown in the right
side of Figure 1-1). Using OS consumes FPGA resources more than the first solution, but the
benefit of OS is suitable for complicated system and various applications. To connect hardware to
OS, device driver needs to be used as media to write/read register to control hardware. Special
character device driver is created for the ease of use by Application layer to access hardware.

Comparing to NVMe-IP reference design, the hardware on Linux reference design has additional
feature to allow CPU to read the latest data output from NVMe-IP for Read command. CPU uses
character device driver to read the data, so one data word is returned to CPU for each access.
This hardware is suitable for system monitoring which does not require high performance transfer.

PCIe Hard IP

DG NVMe-IP

User Logic

NVMe-IP Reference design

CPU

(Baremetal OS)

Data Control

NVMe-IP Linux reference design

CPU

(Linux OS +

Character device driver)

PCIe Hard IP

DG NVMe-IP

User Logic

Data Control
Data

(Read only)

Blue: Modification point in Linux demo

from NVMe-IP reference design

Figure 1-1 Comparison between NVMe-IP reference design and Linux reference design

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 2

2 Hardware

NVMe-IP Linux reference design is modified from NVMe-IP reference design to use ARM CPU
with Linux OS instead of NiosII CPU with Baremetal OS. Please see more details of NVMe-IP
reference design from following document.
http://www.dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_intel_en.pdf
http://www.dgway.com/products/IP/NVMe-IP/dg_nvmeip_instruction_intel_en.pdf

IP2UFIFO

(512x128)

U2IPFIFO

(512x128)

TestPatt

Generator

Data

Verification

128-bit TxData

128-bit RxData

TestGen

NVMe-IP

Avalon-ST

PCIe Hard IP

NVMeLinux

LAxi2Reg

AXI4 Lite I/F

SoC system

dgIF typeS (DATA)

dgIF typeS (CMD)

IdenCtrl/Name

Avalon-ST

I/F

IdenRAM

(512x128)

128-bit RxData

NVMe SSD

H2F bus

Serial

Char

driver

Blue: Modification point in Linux demo

from NVMe-IP reference design

Test

App
ARM

(Linux OS)

dg_universal

dguTestApp

Figure 2-1 NVMe-IP Linux reference design

Comparing to NVMe-IP reference design, the modification hardware of Linux reference design is
shown in blue color of Figure 2-1. CPU in this reference design is ARM, not NiosII. CPU
interfacing with hardware is AXI4-Lite bus instead of Avalon bus to connect to H2F bus of ARM.

To support AXI4-Lite protocol, LAxi2Reg module is designed to convert the interface from
AXI4-Lite to register interface. Control and data path of NVMe-IP in test system is almost similar to
NVMe-IP reference design. But IdenRAM in Linux reference design is designed to store two data
types, i.e. the latest data from Read command (new feature) and data from Identify command
(original feature). The 1st data of Read command is stored to Addr=0 of IdenRAM and the address
is increased before receiving the next data. If transfer size of Read command is more than 8
Kbyte which is IdenRAM size, new data will replace the old data in IdenRAM.

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 3

CPU in Linux reference design is ARM which runs Linux OS. Test application on OS needs to
access the hardware through device driver. For simply design, character device driver is designed
to allow user to access write/read register of hardware. Two softwares are designed for this
reference design, i.e. “dg_universal” which is the device driver and “dguTestApp” which is the test
application. User controls the system through Serial console. More details of the hardware are
described as follows.

2.1 Avalon-ST PCIe Hard IP
Some FPGA models include the Hard IP for PCIe which uses Avalon stream to be user interface.
The reference design uses PCIe Hard IP to implement PCIe protocol. More details of the IP can
be found from following website.
https://www.altera.com/documentation/lbl1414599283601.html

2.2 NVMe-IP
NVMe-IP implements NVMe protocol to access NVMe SSD through PCIe Hard IP. User interface
of NVMe-IP is designed following dgIF typeS interface. More details of the IP are described in
NVMe-IP datasheet.
http://www.dgway.com/products/IP/NVMe-IP/dg_nvmeip_datasheet_intel_en.pdf

2.3 TestGen
This is the example of user logic to interface with NVMe-IP. There are two operations in TestGen,
i.e. TestPatt Generator and Data Verification. TestPatt Generator is designed to generate 128-bit
data to NVMe-IP in Write command while Data verification is designed to verify 128-bit data from
NVMe-IP in Read command. This module is similar to the hardware in NVMe-IP reference design.
More details can be found in Topic 5 of NVMe-IP reference design document.

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 4

2.4 LAxi2Reg

AsyncAXIReg

UserReg

AXI4-Lite

Register

I/F

NVMe-IP

dgIF typeS (CMD)

IdenRAM

TestGen

Control&Status

CpuClk

UserClk
PCIeClk

RxData

IdenCtrl/Name

LAxi2Reg

Figure 2-2 LAxi2Reg interface

This module consists of two submodules, i.e. AsyncAXIReg and UserReg. AsyncAXIReg is
designed to convert AXI4-Lite bus to be register interface and to convert clock domain from CPU
clock (CpuClk) to user clock (UserClk) system.

UserReg module includes the logic to decode Write/Read address to select the register for
current access. The address is decoded following Table 2-1. Transferred parameters such as
transfer direction, size, and address from user are converted to be a command interface of dgIF
typeS for NVMe-IP and control signal for TestGen module. During transfer, CPU reads the register
to check NVMe-IP status (CMD interface of dgIF typeS), TestGen result, Identify device data
(IdenCtrl/Name), or the latest data from Read command (RxData).

Table 2-1 Register map definition
Address Register Name Description

Rd/Wr (Label in the “dg_universal.h”)

BA+0x0000 – BA+0x00FF : Device Control

BA+0x00 User Address (Low) Reg [31:0]: Input to be start sector address (UserAddr[31:0] of dgIF typeS)

Wr (CTRL_DEVADRL)

BA+0x04 User Address (High) Reg [15:0]: Input to be start sector address (UserAddr[47:32] of dgIF typeS)

Wr (CTRL_DEVADRH)

BA+0x08 User Length (Low) Reg [31:0]: Input to be transfer length in sector unit (UserLen[31:0] of dgIF typeS)

Wr (CTRL_DEVLENL)

BA+0x0C User Length (High) Reg [15:0]: Input to be transfer length in sector unit (UserLen[47:32] of dgIF

typeS) Wr (CTRL_DEVLENH)

BA+0x10 User Command Reg [1:0]: Input to be user command (UserCmd of dgIF typeS)

“00”-Identify, “10”-Write SSD, “11”-Read SSD

When this register is written, the design generates command request to

NVMe-IP to start new command operation.

Wr (CTRL_DEVCMD)

BA+0x14 Test Pattern Reg [2:0]: Test pattern select

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR Wr (CTRL_PATTERN)

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 5

Address Register Name Description

Rd/Wr (Label in the “dg_universal.h”)

BA+0x0100 – BA+0x01FF : Device Status

BA+0x100 User Status Reg [0]: UserBusy of dgIF typeS (‘0’: Idle, ‘1’: Busy)

[1]: UserError of dgIF typeS (‘0’: Normal, ‘1’: Error)

[2]: Data verification fail (‘0’: Normal, ‘1’: Error)

[4:3]: PCIe speed from IP

(“00”: No linkup, “01”: PCIe Gen1, “10”: PCIe Gen2, “11”: PCIe Gen3)

Rd (STAT_USRSTS)

BA+0x104 Total disk size (Low) Reg [31:0]: Total capacity of SSD in sector unit (LBASize[31:0] of dgIF typeS)

Rd (STAT_LBASIZEL)

BA+0x108 Total disk size (High) Reg [15:0]: Total capacity of SSD in sector unit (LBASize[47:32] of dgIF typeS)

Rd (STAT_LBASIZEH)

BA+0x10C User Error Type Reg [31:0]: User error status (UserErrorType[31:0] of dgIF typeS)

Rd (STAT_USRERRTYPE)

BA+0x114 Completion Status Reg [15:0]: Status from Admin completion

(AdmCompStatus[15:0] from NVMe-IP)

[31:16]: Status from IO completion (IOCompStatus[15:0] from NVMe-IP)

Rd (STAT_COMPSTS)

BA+0x118 NVMe CAP Reg [31:0]: NVMeCAPReg[31:0] output from NVMe-IP

Rd (STAT_NVMCAP)

BA+0x11C NVMe IP Test pin Reg [31:0]: TestPin[31:0] output from NVMe-IP

Rd (STAT_NVMTTESTPIN)

BA+0x120 Data Failure Address (Low) Reg [31:0]: Latch value of failure address[31:0] in byte unit from read command

Rd (STAT_RDFAILNOL)

BA+0x124 Data Failure Address (High) Reg [24:0]: Latch value of failure address [56:32] in byte unit from read

command Rd (STAT_RDFAILNOH)

BA+0x130 Expected value Word0 Reg [31:0]: Latch value of expected data [31:0] from read command

Rd (STAT_EXPPATW0)

BA+0x134 Expected value Word1 Reg [31:0]: Latch value of expected data [63:32] from read command

Rd (STAT_EXPPATW1)

BA+0x138 Expected value Word2 Reg [31:0]: Latch value of expected data [95:64] from read command

Rd (STAT_EXPPATW2)

BA+0x13C Expected value Word3 Reg [31:0]: Latch value of expected data [127:96] from read command

Rd (STAT_EXPPATW3)

BA+0x140 Read value Word0 Reg [31:0]: Latch value of read data [31:0] from read command

Rd (STAT_RDPATW0)

BA+0x144 Read value Word1 Reg [31:0]: Latch value of read data [63:32] from read command

Rd (STAT_RDPATW1)

BA+0x148 Read value Word2 Reg [31:0]: Latch value of read data [95:64] from read command

Rd (STAT_RDPATW2)

BA+0x14C Read value Word3 Reg [31:0]: Latch value of read data [127:96] from read command

Rd (STAT_RDPATW3)

BA+0x150 Current test byte (Low) Reg [31:0]: Current test data size of TestGen module in byte unit (bit[31:0])

Rd (STAT_CURTESTSIZEL)

BA+0x154 Current test byte (High) Reg [24:0]: Current test data size of TestGen module in byte unit (bit[56:32])

Rd (STAT_CURTESTSIZEH)

BA+0x2000 : Device Identification Data

BA+0x2000

– 0x3FFF

IdenRAM area

(IDEN_CTRL)

8Kbyte Identify Controller/Namespace data or the latest data from Read

command

Note: BA is base address of LAxi2Reg which is mapped to H2F bus of ARM.

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 6

3 Software

Figure 3-1 Software on ARM in reference design

Figure 3-1 shows software structure of the demo in reference design. Two softwares for Linux OS
are specially designed to interface with the hardware, i.e. “dg_universal” which is character device
driver and “dguTestApp” which is test application.

Memory map shown in Table 2-1 has been declared in the device driver. The sequence to
write/read hardware register for each operation is designed in the device driver. The test
application is designed to interface with user to get the parameters and the operation request.
After verifying user input, the application calls the function to write, read, or identify the device.
Otherwise, the application shows the hardware status during operation. Transfer performance as
a test result is shown when completes the operation. More details of the software are described as
follows.

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 7

3.1 Device driver (dg_universal)

The device driver in reference design is designed to write/read hardware registers for sending
control signals and monitoring status signals. Test data transferring with SSD is generated and
verified by the hardware, not by CPU. So, it does not need to use block device driver to manage
data flow by CPU. Using character device driver is simple and fit for this system.

There are many functions in the device driver. This document describes some functions which the
operation is related to the hardware in NVMe-IP Linux reference design.

3.1.1 dgu_readIden
This function is called to read device model name and device capacity from Identify command.
The sequence of the function is shown as follows.

1) Clear value in temp buffer.
2) Read device model name from IdenRAM (at IDEN_CTRL address) to store to temp buffer.
3) Read device capacity from STAT_LBASIZE register and convert to Gigabyte unit.
4) Store device capacity to temp buffer.
5) Return data in the temp buffer.

3.1.2 dgu_readError
This function is called when error is found. Error type is decoded in this function. The sequence of
the function is shown as follows.

1) Read error type value from STAT_USERRTYPE register.
2) Decode error value starting from the lowest bit of STAT_USERRTYPE register and return

the error message following the error type. For example, “PCIe Class Code Error” is
returned when bit0 of STAT_USERRTYPE is asserted to ‘1’.

3.1.3 dgu_read
This function is called to check the status of current operation. The sequence of the function
depends on the operation.

a) For Identify operation,
1) Check UserBusy flag (bit0 of STAT_USRSTS). Exit the program and return 0 when

UserBusy still be equal to ‘1’.
2) Check UserError flag (bit1 of STAT_USRSTS). Exit the program and return error when

UserError is set to ‘1’.
3) If no flag is detected, the function will call dgu_readIden function to read device model

name and capacity.

b) For Write and Read operation,
1) Check UserError flag (bit1 of STAT_USRSTS). If UserError is set to ‘1’, dgu_readError

function will be called to decode error message.
2) Check Verification fail flag (bit2 of STAT_USRSTS). If flag is set to ‘1’, Read value

(STAT_RDPATW0-W3) and Expected value (STAT_EXPPATW0-W3) will be returned.
3) Check UserBusy flag (bit0 of STAT_USRSTS). If UserBusy is set to ‘1’, current transfer

size in Kbyte unit will be returned.
4) If no flag is detected, the function will return END status.

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 8

c) For Dump operation,

1) Check UserBusy flag (bit0 of STAT_USRSTS). If UserBusy is set to ‘1’, the function will
return BUSY status.

2) Check Verification fail flag (bit2 of STAT_USRSTS). If flag is set to ‘1’, the function will
return ERROR status and call dgu_readError function to decode error message.

3) If no flag is detected, the function will return the data from IdenRAM which stores the
latest data from Read command.

3.1.4 dgu_ioctrl
This function is called to write hardware registers to start the operation. Similar to dgu_read
function, the sequence of the function depends on the operation.

a) For Identify operation,
1) Set CTRL_DEVCMD register = Identify command.

b) For Write and Read operation,

1) Receive parameters from the user.
2) Set CTRL_DEVADR register = start sector address from user.
3) Set CTRL_DEVLEN register = total sector length from user.
4) Set CTRL_PATTERN register following user input.
5) Set CTRL_DEVCMD register = Write or Read command.

c) For Dump operation,

1) Receive parameters from the user.
2) Set CTRL_DEVADR register = start sector address from user.
3) Set CTRL_DEVLEN register = total sector length from user.
4) Set CTRL_DEVCMD register = Read command.

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 9

3.2 Test application (dguTestapp)

There are four operations for user to run the demo, i.e. Identify SSD to read SSD information,
Write SSD to check write performance, Read SSD to check read performance and verify test data,
and Dump SSD to monitor the data in SSD. More details of each operation are described as
follows.

3.2.1 Identify SSD

This menu is created to read data from Identify command which is stored in IdenRAM. The
sequence of Identify SSD is shown as follows.

1) Read Identify data from IdenRAM and store in the buffer.
2) Clear model_name and model_size variable.
3) Copy model name from Identify data to model_name variable.
4) Copy SSD capacity to model_size variable.
5) Print out model_name and model_size.

3.2.2 Write SSD

This menu is created to send write command to SSD. Three inputs are required to set Start LBA,
Sector count, and Pattern. The operation will be cancelled if input is invalid. The sequence of
Write SSD is shown as follows.

1) Receive Start LBA, Sector count, and Pattern from user.
2) Write Start LBA, Sector count, and Pattern to registers in NVMe-IP.
3) Read status of NVMe-IP.
4) Check busy status of NVMe-IP.
5) Print current transfer size.
6) Sleep for 100 usec.
7) Run step 3) - 6) in the loop until NVMe-IP is idle.
8) Go back to main menu.

3.2.3 Read SSD

This menu is created to send read command to SSD. Three inputs are required, as same as Write
SSD, to set Start LBA, Sector count, and Pattern. The operation will be cancelled if input is invalid.
The sequence of Write SSD is shown as follows.

1) Receive Start LBA, Sector count, and Pattern from user.
2) Write Start LBA, Sector count, and Pattern to registers in NVMe-IP.
3) Read status of NVMe-IP.
4) Read data verification status
5) Check busy status of NVMe-IP.
6) Print current transfer size.
7) Sleep for 100 usec.
8) Run step 3) - 8) in the loop until NVMe-IP is idle.
9) Go back to main menu.

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 10

3.2.4 Dump SSD

This menu is created to send read command to SSD. Only one input is required to set Start LBA.
The operation will be cancelled if input is invalid. One sector data is shown on the console. Next,
another input is required from user. There are three options for user selection, i.e. displaying the
next sector, displaying previous sector, or exit to main menu. The sequence of Dump SSD is
shown as follows.

1) Receive Start LBA from user.
2) Check whether Start LBA is valid or not.
3) Send read data one sector
4) Print out data one sector
5) Required input from user.
6) Select 3 options

• Previous : show the previous sector and run step 3) – 5)

• Next : show the next sector and run step 3) – 5)

• Exit : exit to main menu

dg_nvmeip_linux_reference_intel_en.doc

15-Feb-18 Page 11

4 Revision History

Revision Date Description

1.0 15-Feb-18 Initial version release

