
dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 1

NVMe-IP reference design manual
Rev3.3 25-Mar-20

1 NVMe

NVM Express (NVMe) defines the interface for the host controller to access solid state drives
(SSD) by PCI Express. NVM Express optimizes the process to issue command and completion by
using only two registers (Command issue and Command completion). Also, NVMe supports
parallel operation by supporting up to 64K commands within single queue. 64K command entries
improves transfer performance for both sequential and random access.

In PCIe SSD market, two standards are used, i.e. AHCI and NVMe. AHCI is the older standard to
provide the interface for SATA hard disk drive while NVMe is optimized for non-volatile memory
like SSD. The comparison between both AHCI and NVMe protocol in more details is described in
“A Comparison of NVMe and AHCI” document.
https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf

The example of NVMe storage device is shown in http://www.nvmexpress.org/products/.

PCIe Phy

PCIe Link

PCIe Transport

NVMe Driver

CPU

NVMe-IP

PC system FPGA

NVMe SSDNVMe SSD

Avalon-ST

PCIe Hard IP

PCIe Hard IP Block

PHY IP Core

for PCIe

Figure 1-1 NVMe protocol layer

To access NVMe SSD, the general system implements NVMe driver running on the processor, as
shown in the left side of Figure 1-1. The physical connection of NVMe standard is PCIe connector
which is one-to-one type, so one PCIe host can connect to one PCIe device. NVMe-IP
implements NVMe driver to access NVMe SSD by using pure-hardware logic. So, user can
access NVMe SSD without including any processor and driver by using NVMe-IP in FPGA board.

https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf
http://www.nvmexpress.org/products/

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 2

2 Hardware overview

Figure 2-1 NVMe-IP demo hardware

The hardware system can be split into three groups, i.e. TestGen, NVMe, and CPU. TestGen is
the test logic to generate test data stream for NVMe-IP through U2IPFIFO. Also, TestGen reads
data stream output from NVMe-IP through IP2UFIFO, and then verify it. NVMe includes the
NVMe-IP and the PCIe hard IP (Avalon-ST PCIe hard IP). NVMe supports to access NVMe SSD
directly. CPU and Avl2Reg are designed to interface with user through JTAG UART. User can set
command and the test parameters through JTAG UART. Also, the current status of the test
hardware is monitored by user through JTAG UART. The CPU firmware must be implemented to
control the sequence for operating each command.

There are three clock domains displayed in Figure 2-1, i.e. CpuClk, UserClk, and PCIeClk.
CpuClk is the clock domain of CPU and its peripherals. This clock must be stable clock which is
independent from the other hardware interface. PCIeClk is the clock output from PCIe hard IP to
synchronous with data stream of 128-bit Avalon-ST interface. When the PCIe hard IP is set to 4
lane PCIe Gen3, PCIeClk frequency is equal to 250 MHz (125 MHz is applied for PCIe Gen2).
UserClk is the example user clock domain which is independent from the other clock domains. So,
UserClk is the main clock domain for running the user interface of NVMe-IP, RAM, FIFO, and
TestGen. According to NVMe-IP datasheet, clock frequency of UserClk must be more than or
equal to PCIeClk. In this reference design, UserClk is equal to 275 MHz for PCIe Gen3 speed.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 3

There are six memories implemented in the test system, i.e. CtmRAM, IdenRAM, TxFIFO,
RxFIFO, U2IPFIFO, and IP2UFIFO.

CtmRAM stores returned data of each SSD from SMART command while IdenRAM stores
returned data from Identify command. When running SMART command or Identify command, the
returned data from the command is decoded by CPU which is read through Avl2Reg module by
using Avalon-MM bus.

U2IPFIFO and IP2UFIFO are connected between TestGen and NVMe-IP for storing data when
running Write command and Read command respectively. TestGen is designed to monitor flow
control signal of U2IPFIFO and IP 2UFIFO to be always read and write data when the FIFO is
ready. The FIFO depth is set to 512 x 128 bit. More details of the hardware are described as
follows.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 4

2.1 TestGen

Figure 2-2 TestGen interface

TestGen module is the test logic to send test data to NVMe-IP through U2IPFIFO when
operating Write command. Also, the test data is fed to be the expected value to verify the read
data from NVMe-IP through IP2UFIFO when operating Read command. Control logic asserts
Write enable and Read enable to ‘1’ when the FIFOs are ready. Data bandwidth of TestGen is
matched to NVMe-IP by running at the same clock and using same data bus size, so
NVMe-IP can transfer data with U2IPFIFO and IP2UFIFO without waiting data ready. As a
result, the test logic shows the best performance to write and read data with the SSD through
NVMe-IP.

Register file in the TestGen receives test parameters from user, i.e. total transfer size, transfer
direction, verification enable, and test pattern selector. So, the internal logic includes the
counter to control total transfer size of test data. The details of hardware logic of TestGen are
shown in Figure 2-3.

Figure 2-3 TestGen hardware

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 5

As shown in the right side of Figure 2-3, flow control signals of FIFO are WrFfAFull and
RdFfEmpty. When FIFO is almost full during write operation (WrFfAFull=’1’), WrFfWrEn is
de-asserted to ‘0’ to pause data sending to FIFO. For read operation, when FIFO has data
(RdFfEmpty=‘0’), the logic reads data from FIFO to compare with the expected data by
asserting RdFfRdEn to ‘1’.

The logic in the left side of Figure 2-3 is designed to count transfer size (rDataCnt). When total
data count is equal to the end size (rEndSize), set by user, write enable or read enable of
FIFO is de-asserted to ‘0’.

The lower side of Figure 2-3 shows the details to generate test data for writing to FIFO or
verifying data from FIFO. There are five patterns to generate, i.e. all zero, all one, 32-bit
incremental data, 32-bit decremental data, and LFSR counter. All zero and all one are fixed
value to select test data through Pattern Selector. While 32-bit incremental data is designed
by using 53-bit counter. The decremental data can be designed by connecting NOT logic to
increment data. The LFSR pattern is designed by using LFSR counter. The equation of LFSR
is x^31 + x^21 + x + 1. Data bus size of TestGen is 128-bit, so four 32-bit LFSR data must be
generated within one clock. The logic to design LFSR must use look-ahead style to generate
four LFSR data in the same clock.

When creating all zero or all one pattern, every bit of data is fixed zero or one respectively.
While other patterns are designed by separating the data as two parts to create unique test
data in every 512-byte data. As shown in Figure 2-4, 512-byte data consists of 64-bit header
in Dword#0 and Dword#1 and the test data in remaining words of 512-byte data (Dword#2 –
Dword#127).

Figure 2-4 Test pattern format in each 512-byte data for Increment/Decrement/LFSR pattern

64-bit header is created by using the address in 512-byte unit (rTrnAddr), output from the
Address counter. The address counter loads the start value from user (TrnAddr) and then
increases the value after finishing 512-byte data transferring

Test data is fed to be write data to the FIFO or the expected data for verifying with the read
data from FIFO. Fail flag is asserted to ‘1’ when data verification is failed. The example of
timing diagram to write data to FIFO is shown as follows.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 6

WrPattStart

rWrTrans

rDataCnt 0 1

1. rWrTrans is asserted to

‘1’ after WrPattStart=’1'

1

2

2. rWrFfWrEn=‘1’ when

rWrTrans=’1' and WrFfAFull=’0'.

WrFfAFull

rWrFfWrEn[0]

2 3 4 rEndSize rEndSize+1

4

4. rWrFfWrEn is deasserted to ‘0’

when WrFfAFull=’1'.

3

3. rDataCnt is increment

when rWrFfWrEn=’1'

5

5. rWrTrans and rWrFfWrEn are deasserted to

‘0’ when rDataCnt=rEndSize and rWrFfWrEn=’1'.

Figure 2-5 Timing diagram of Write operation in TestGen

1) WrPattStart is asserted to ‘1’ for one clock cycle when user sets the register to start write

operation. In the next clock, rWrTrans is asserted to ‘1’ to enable the control logic for
generating write enable to FIFO.

2) Write enable to FIFO (rWrFfWrEn) is asserted to ‘1’ when two conditions are met. First,
rWrTrans must be asserted to ‘1’ during the write operation being active. Second, the
FIFO must not be full by monitoring WrFfAFull=’0’.

3) The write enable is also applied to be counter enable for counting total data (rDataCnt) in
the write operation.

4) If FIFO is almost full (WrFfAFull=’1’), the write process is paused by de-asserting
rWrFfWrEn to ‘0’.

5) When total data count is equal to the set value, rWrTrans is de-asserted to ‘0’. At the same
time, rWrFfWrEn is also de-asserted to ‘0’ to stop data generating.

When running read operation, read enable of FIFO is only controlled by empty flag of FIFO.
Data is read when FIFO has the data. It does not wait start flag for beginning the read
operation and also not monitor total count for stopping the read operation. When the read
enable is asserted to ‘1’, the address counter is increased for generating the header of
expected value and for checking total read data in read operation.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 7

2.2 NVMe

Figure 2-6 NVMe hardware

Figure 2-6 shows the example to interface NVMe-IP in the reference design. The user
interface of NVMe-IP consists of control interface and data interface. The control interface
receives the command parameters through dgIF typeS or custom command interface,
depending on the command. Custom command interface is applied when the command is
SMART command or Flush command. Otherwise, dgIF typeS is applied.

The data interface of NVMe-IP has four signal groups, i.e. FIFO input interface (dgIF types),
FIFO output interface (dgIF types), custom command RAM interface, and Identify interface.
Data bus width of all signal groups is 128-bit. The custom command RAM interface is
bi-directional interface while others are one directional interface. In the reference design, the
custom command RAM interface is used to transfer data of SMART command from NVMe-IP
to Avl2Reg only. Another direction is not used.

2.2.1 NVMe-IP

NVMe-IP implements NVMe protocol of the host side to access NVMe SSD. User interface is
designed by using dgIF typeS interface. NVMe-IP connects with Avalon-ST PCIe Hard IP
(Hard IP in Intel FPGA device). More details of NVMe-IP are described in datasheet.
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_datasheet_intel_en.pdf

2.2.2 Avalon-ST PCIe Hard IP

This block is hard IP in Intel FPGA device which implements Physical, Data Link, and
Transaction Layers of PCIe specification. More details are described in Intel FPGA document.

ArriaV Avalon-ST Interface for PCIe Solutions User Guide
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a5_pcie
_avst.pdf
Stratix V Avalon-ST Interface for PCIe Solutions User Guide
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_s5_pcie
_avst.pdf

https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_datasheet_intel_en.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a5_pcie_avst.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a5_pcie_avst.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_s5_pcie_avst.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_s5_pcie_avst.pdf

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 8

Intel Arria10 and Intel Cyclone 10 GX Avalon-ST Interface for PCIe Solutions User Guide
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a10_pci
e_avst.pdf

2.2.3 Two-port RAM

Two of 2-Port RAMs are implemented in the reference design to store data from Identify
command and SMART command.

IdenRAM is simple dual-port RAM which has one read port and one write port. The data size
of Identify command is 8Kbyte, so IdenRAM size is 8Kbyte. NVMe-IP and Avl2Reg have
different data bus size, so IdenRAM sets the different bus size for write port and read port.
The data interface of NVMe-IP (write port) is 128-bit while the interface of Avl2Reg (read port)
is 32-bit. Furthermore, NVMe-IP has double word enable to write only 32-bit data in some
cases. The RAM setting on IP catalog of QuartusII supports the write byte enable. So, one bit
of double word enable is extended to be 4-bit write byte enable as shown in Figure 2-7.

Figure 2-7 Word enable to be byte write enable connection

Bit[0] of WrDWEn is fed to bit[3:0] of IdenRAM byte write enable. Bit[1] of WrDWEn is applied
to generate bit[7:4] of IdenRAM write byte enable, and so on.

Similar to IdenRAM, CtmRAM supports byte write enable and double word enable of custom
interface is connected to 4-bit write byte enable. Unlike IdenRAM, CtmRAM is true dual-port
RAM (two read ports and two write ports) to allow NVMe-IP and Avl2Reg writing and reading
data. The data width of both interfaces generated by IP catalog is 128-bit. The small logic is
designed to convert data bus from 128-bit to be 32-bit for Avl2Reg access in write and read
transaction. Two lower address bits are applied to select the active double word from 128-bit
data. CtmRAM is implemented by 8Kbyte RAM for the future support though the data size of
SMART command is 512-byte.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a10_pcie_avst.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a10_pcie_avst.pdf

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 9

2.3 CPU and Peripherals

32-bit Avalon-MM bus is applied to be the bus interface for CPU accessing the peripherals
such as Timer and JTAG UART. To control and monitor the test logic of NVMe-IP, the test logic
is connected to CPU as a peripheral on 32-bit Avalon-MM bus. CPU assigns the different
base address and the address range for each peripheral.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. The base address and the range for accessing the test logic are defined in the CPU
system. So, the hardware logic must be designed to support Avalon-MM bus standard for
writing and reading the register. Avl2Reg module is designed to connect the CPU system as
shown in Figure 2-8.

Figure 2-8 CPU and peripherals hardware

Avl2Reg consists of AsyncAvlReg and UserReg. AsyncAvlReg is designed to convert the
Avalon-MM signals to be the simple register interface which has 32-bit data bus size, similar
to Avalon-MM data bus size. In addtition, AsyncAvlReg includes asynchronous logic to
support clock crossing between CpuClk domain and UserClk domain.

UserReg includes the register file of the parameters and the status signals to control the other
modules, i.e. CtmRAM, IdenRAM, NVMe-IP, and TestGen. More details of AsyncAvlReg and
UserReg are described as follows.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 10

2.3.1 AsyncAvlReg

Figure 2-9 AsyncAvlReg Interface

The signal on Avalon-MM bus interface can be split into three groups, i.e. Write channel (blue
color), Read channel (red color) and Shared control channel (black color). More details of
Avalon-MM interface specification is described in following document.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_av
alon_spec.pdf

According to Avalon-MM specification, one command (write or read) can be operated at a
time. The logic inside AsyncAvlReg is split into three groups, i.e. Write control logic, Read
control logic, and Flow control logic. Flow control logic to control SAvlWaitReq is designed to
hold the next request from Avalon-MM interface while the current request is operating. Write
control I/F and Write data I/F of Avalon-MM bus are latched and transferred as Write register.
While Read control I/F and Read data I/F of Avalon-MM bus are latched and transferred as
Read register. Address I/F of Avalon-MM is latched and transferred to Address register
interface as well.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 11

The simple register interface is designed to compatible to general RAM interface for write
transaction. The read transaction of the register interface is little modified from RAM interface
by adding RdReq signal. The address of register interface is shared for write and read
transaction. So, user cannot write and read the register at the same time. The timing diagram
of the register interface is shown in Figure 2-10

Figure 2-10 Register interface timing diagram

1) To write register, the timing diagram is same as general RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bit to be the byte data valid, i.e. bit[0] for RegWrData[7:0], bit[1] for
RegWrData[15:8], and so on.

2) To read register, AsyncAvlReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAvlReg forwards the read value to SAvlRead interface.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 12

2.3.2 UserReg

Figure 2-11 UserReg Interface

The address range to map to UserReg is split into six areas, as shown in Figure 2-11.
1) 0x0000 – 0x00FF: mapped to set the test parameters of NVMe-IP and TestGen. This area

is write access only.
2) 0x0200 – 0x02FF: mapped to set the test parameters of custom command interface

(NVMe-IP). This area is write access only.
3) 0x0100 – 0x01FF: mapped to read the status of NVMe-IP and TestGen. This area is read

access only.
4) 0x0300 – 0x03FF: mapped to read the status of custom command interface (NVMe-IP).

This area is read access only.
5) 0x2000 – 0x3FFF: mapped to read data from IdenRAM. This area is read access only.
6) 0x4000 – 0x5FFF: mapped to custom command RAM interface (NVMe-IP). This area

supports write access and read access. The demo shows only read access by running
SMART command.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32-bit bus size, so write byte enable (RegWrByteEn) is not used.
To set the parameters in the hardware, the CPU must use 32-bit pointer to force 32-bit valid
value of the write data.

To read register, two step multiplexers are designed. Register Mux is the data multiplexer to
select the read data within each address area. The lower bit of RegAddr is applied in the
Register Mux. Next, the address decoder uses the upper bit to select the read data from each
area for returning to CPU. Totally, the latency of read data is equal to two clock cycles, so
RegRdValid is created by RegRdReq with asserting two D Flip-flips.

More details of the address mapping within UserReg module is shown in Table 2-1.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 13

Table 2-1 Register Map

Address Register Name Description

Wr/Rd (Label in the “nvmeiptest.c”)

0x0000 – 0x00FF: Control signals of NVMe-IP and TestGen (Write access only)

BA+0x0000 User Address (Low) Reg [31:0]: Input to be start address as 512-byte unit

(UserAddr[31:0] of dgIF typeS) (USRADRL_REG)

BA+0x0004 User Address (High) Reg [15:0]: Input to be start address as 512-byte unit

(UserAddr[47:32] of dgIF typeS) (USRADRH_REG)

BA+0x0008 User Length (Low) Reg [31:0]: Input to be transfer length as 512-byte unit

(UserLen[31:0] of dgIF typeS) (USRLENL_REG)

BA+0x000C User Length (High) Reg [15:0]: Input to be transfer length as 512-byte unit

(UserLen[47:32] of dgIF typeS) (USRLENH_REG)

BA+0x0010 User Command Reg [2:0]: Input to be user command (UserCmd of dgIF typeS for NVMe-IP)

“000”: Identify, “001”: Shutdown, “010”: Write SSD, “011”: Read SSD,

“100”: SMART, “110”: Flush, “101”/”111”: Reserved

When this register is written, the command request is sent to NVMe-IP to

start the operation.

(USRCMD_REG)

BA+0x0014 Test Pattern Reg [2:0]: Test pattern select

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR (PATTSEL_REG)

BA+0x0020 NVMe Timeout Reg [31:0]: Timeout value of NVMe-IP

(TimeOutSet[31:0] of NVMe-IP) (NVMTIMEOUT_REG)

0x0100 – 0x01FF: Status signals of NVMe-IP and TestGen (Read access only)

BA+0x0100 User Status Reg [0]: UserBusy of dgIF typeS (‘0’: Idle, ‘1’: Busy)

[1]: UserError of dgIF typeS (‘0’: Normal, ‘1’: Error)

[2]: Data verification fail (‘0’: Normal, ‘1’: Error)

(USRSTS_REG)

BA+0x0104 Total disk size (Low) Reg [31:0]: Total capacity of SSD in 512-byte unit

(LBASize[31:0] of dgIF typeS) (LBASIZEL_REG)

BA+0x0108 Total disk size (High) Reg [15:0]: Total capacity of SSD in 512-byte unit

(LBASize[47:32] of dgIF typeS)

[31]: LBA unit (‘0’:512Byte, ‘1’:4KByte), mapped from LBAMode of NVMe-IP

(LBASIZEH_REG)

BA+0x010C User Error Type Reg [31:0]: User error status

(UserErrorType[31:0] of dgIF typeS) (USRERRTYPE_REG)

BA+0x0110 PCIe Status Reg [0]: PCIe linkup status from PCIe hard IP (‘0’: No linkup, ’1’: linkup)

[3:2]: PCIe link speed from PCIe hard IP

(“00”: Not linkup, “01”: PCIe Gen1, “10”: PCIe Gen2, “11”: PCIe Gen3)

[7:4]: PCIe link width status from PCIe hard IP

(“0001”: 1 lane, “0010”: 2 lane, ”0100”: 4 lane, ”1000”: 8 lane)

[12:8]: Current LTSSM State of PCIe hard IP. Please see more details of

LTSSM value in Avalon-ST PCIe Hard IP datasheet

(PCISTS_REG)

BA+0x0114 Completion Status Reg [15:0]: Status from Admin completion (AdmCompStatus[15:0] of NVMe-IP)

[31:16]: Status from I/O completion (IOCompStatus[15:0] of NVMe-IP) (COMPSTS_REG)

BA+0x0118 NVMe CAP Reg [31:0]: NVMeCAPReg[31:0] output from NVMe-IP

(NVMCAP_REG)

BA+0x011C NVMe IP Test pin Reg [31:0]: TestPin[31:0] output from NVMe-IP

(NVMTESTPIN_REG)

BA+0x0130 Expected value Word0 Reg [31:0]: Bit[31:0] of the expected data at the 1st failure data in Read command

(EXPPATW0_REG)

BA+0x0134 Expected value Word1 Reg [31:0]: Bit[63:32] of the expected data at the 1st failure data in Read

command (EXPPATW1_REG)

BA+0x0138 Expected value Word2 Reg [31:0]: Bit[95:64] of the expected data at the 1st failure data in Read

command (EXPPATW2_REG)

BA+0x013C Expected value Word3 Reg [31:0]: Bit[127:96] of the expected data at the 1st failure data in Read

command (EXPPATW3_REG)

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 14

Address Register Name Description

Wr/Rd (Label in the “nvmeiptest.c”)

0x0100 – 0x01FF: Status signals of NVMe-IP and TestGen (Read access only)

BA+0x0140 Read value Word0 Reg [31:0]: Bit[31:0] of the read data at the 1st failure data in Read command

Rd (RDPATW0_REG)

BA+0x0144 Read value Word1 Reg [31:0]: Bit[63:32] of the read data at the 1st failure data in Read command

Rd (RDPATW1_REG)

BA+0x0148 Read value Word2 Reg [31:0]: Bit[95:64] of the read data at the 1st failure data in Read command

Rd (RDPATW2_REG)

BA+0x014C Read value Word3 Reg [31:0]: Bit[127:96] of the read data at the 1st failure data in Read

command Rd (RDPATW3_REG)

BA+0x0150 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure data in Read

command Rd (RDFAILNOL_REG)

BA+0x0154 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure data in Read

command Rd (RDFAILNOH_REG)

BA+0x0158 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen module

Rd (CURTESTSIZEL_REG)

BA+0x015C Current test byte (High) Reg [24:0]: Bit[56:32] of the current test data size of TestGen module

Rd (CURTESTSIZEH_REG)

Other interfaces (Custom command of NVMe-IP, IdenRAM, and Custom RAM)

BA+0x0200 –

BA+0x023F

Custom Submission Queue Reg [31:0]: Submission queue entry of SMART and Flush command.

Input to be CtmSubmDW0-DW15 of NVMe-IP.

0x200: DW0, 0x204: DW1, …, 0x23C: DW15 Wr (CTMSUBMQ_REG)

BA+0x0300 –

BA+0x030F

Custom Completion Queue Reg [31:0]: CtmCompDW0-DW3 output from NVMe-IP.

0x300: DW0, 0x304: DW1, …, 0x30C: DW3

Rd (CTMCOMPQ_REG)

BA+0x0800 IP Version Reg [31:0]: IP version number

(IPVersion[31:0] of NVMe-IP) Rd (IPVERSION_REG)

BA+0x2000 –

BA+0x2FFF

Identify Controller Data

4Kbyte Identify controller data structure

Rd (IDENCTRL_REG)

BA+0x3000 –

BA+0x3FFF

Identify Namespace Data

4Kbyte Identify Namespace Data Structure

Rd (IDENNAME_REG)

BA+0x4000 –

BA+0x5FFF

Custom command Ram Connect to 8K byte CtmRAM interface.

Used to store 512-byte data output from SMART command.

Wr/Rd (CTMRAM_REG)

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 15

3 CPU Firmware

3.1 Test firmware (nvmeiptest.c)

After system boot-up, CPU runs following steps to finish the initialization process.
1) CPU initializes JTAG UART and Timer parameters.
2) CPU waits until PCIe connection links up (PCISTS_REG[0]=’1’).
3) CPU waits until NVMe-IP completes initialization process (USRSTS_REG[0]=’0’). The

error message is displayed and the process stops when some errors are found.
4) CPU displays PCIe link status (the number of PCIe lanes and the PCIe speed) by reading

PCISTS_REG[7:2].
5) CPU displays the main menu. There are six menus for running six commands of NVMe-IP,

i.e. Identify, Write, Read, SMART, Flush, and Shutdown.
More details of the sequence in each command are described as follows.

3.1.1 Identify Command

The step to operate Identify command is described as follows.
1) Set USRCMD_REG[2:0]=”000”. Next, Test logic generates command and request to

NVMe-IP. After that, Busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG value.
Bit[0] is de-asserted to ‘0’ when command is completed. After that, the data from Identify
command is stored to IdenRAM.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details (read from USRERRTYPE_REG[31:0]). Finally, the
process is stopped.

3) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU displays some information
from IdenRAM (IDENCTRL_REG) such as SSD model name and the information from
NVMe-IP output, i.e. SSD capacity and LBA unit size (LBASIZE_REG).

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 16

3.1.2 Write/Read Command

The step to operate Write/Read command is described as follows.
1) Receive input parameter from user through JTAG UART, i.e. start address, transfer length,

and test pattern. When some inputs are invalid, the operation is cancelled.
Note: If LBA unit size = 4 Kbyte, start address and transfer length must be aligned to 8.

2) Set the input parameters to hardware registers, i.e. USRADRL/H_REG,
USRLENL/H_REG, PATTSEL_REG.

3) Set USRCMD_REG[2:0]=”010” for Write command or “011” for Read command. After that,
the new command request is sent to NVMe-IP for running Write or Read command. Busy
flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.

4) CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring USRSTS_REG[2:0].
Bit[0] is de-asserted to ‘0’ when command is completed.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details and the process is stopped.
Bit[2] is asserted to ‘1’ when data verification is failed. The verification error message is
displayed on the console to show the error details. In this condition, CPU is still running
until the operation is done or user presses any key(s) to cancel operation.

When the operation does not finish, current transfer size read from CURTESTSIZE_REG
is displayed every second.

5) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU calculates and displays the
test result on the console, i.e. total time usage, total transfer size, and transfer speed.

3.1.3 SMART Command,

The step to operate SMART command is described as follows.
1) Set 16 Dwords of Submission queue entry (CTMSUBMQ_REG) to be SMART command

value.
2) Set USRCMD_REG[2:0]=”100”. Next, Test logic generates command and request to

NVMe-IP. After that, Busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
3) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].
Bit[0] is de-asserted to ‘0’ when command is completed. After that, the data from SMART
command is stored to CtmRAM.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details (read from USRERRTYPE_REG[31:0]). Finally, the
process is stopped.

4) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU decodes SMART command
information from CtmRAM (CTMRAM_REG), i.e. Temperature, Total Data Read, Total
Data Written, Power On Cycles, Power On Hours, and Number of Unsafe Shutdown.

More details of SMART log are described in NVM Express Specification.
https://nvmexpress.org/resources/specifications/

https://nvmexpress.org/resources/specifications/

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 17

3.1.4 Flush Command

The step to operate Flush command is described as follows.
1) Set 16 Dwords of Submission queue entry (CTMSUBMQ_REG) to be Flush command

value.
2) Set USRCMD_REG[2:0]=”110”. Next, Test logic generates command and request to

NVMe-IP. After that, Busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
3) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].
Bit[0] is de-asserted to ‘0’ when command is completed. After that, CPU goes back to the
main menu.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details (read from USRERRTYPE_REG[31:0]). Finally, the
process is stopped.

3.1.5 Shutdown Command

The step to operate Shutdown command is described as follows.
1) Set USRCMD_REG[2:0]=”001”. Next, Test logic generates command and request to

NVMe-IP. After that, Busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG value.
Bit[0] is de-asserted to ‘0’ when command is completed. If the command is completed,
CPU does not receive the new command from user. The user must power off the test
system.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details (read from USRERRTYPE_REG[31:0]). Finally, the
process is stopped.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 18

3.2 Function list in Test firmware

int exec_ctm(unsigned int user_cmd)

Parameters user_cmd: 4-SMART command, 6-Flush command

Return value 0: No error, -1: Some errors are found in the NVMe-IP

Description Run SMART command or Flush command, following in topic 3.1.3
(SMART Command,) and 3.1.4 (Flush Command).

int flush_ctmnvm(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the NVMe-IP

Description Set Flush command to CTMSUBMQ_REG and call exec_ctm function to
start Flush command.

unsigned long long get_cursize(void)

Parameters None

Return value Read value of CURTESTSIZEH/L_REG

Description Read CURTESTSIZEH/L_REG and return read value as function result.

int get_param(userin_struct* userin)

Parameters userin: Three inputs from user, i.e. start address, total length in 512-byte
unit, and test pattern

Return value 0: Valid input, -1: Invalid input

Description Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

void iden_dev(void)

Parameters None
Return value None

Description Run Identify command, following in topic 3.1.1. (Identify Command).

void shutdown_dev(void)

Parameters None
Return value None

Description Run Shutdown command, following in topic 3.1.5. (Shutdown Command)

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 19

void show_error(void)

Parameters None

Return value None

Description Read USRERRTYPE_REG, decode the error flag, and display error
message following the error flag of each channel.

void show_pciestat(void)

Parameters None

Return value None

Description Read PCIESTS_REG until the read value from two read times is stable.
After that, display the read value on the console.

void show_result(void)

Parameters None

Return value None

Description Read CURTESTSIZEL/H _REG to display total transfer size. Read the
global parameters (timer_val and timer_upper_val) and calculate total
time usage to display in usec, msec, or sec unit. Finally, transfer
performance is calculated and displayed on MB/s unit.

void show_size(unsigned long long size_input)

Parameters size_input: transfer size to display on the console

Return value None

Description Calculate and display the input value in MByte, GByte, or TByte unit

void show_smart_hex(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as hexadecimal unit.

void show_smart_raw(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as decimal unit when the input value is less than 4
MB. Otherwise, display overflow message.

void show_smart_unit(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as GB or TB unit. When the input value is more
than limit (500 PB), overflow message is displayed instead.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 20

void show_vererr(void)

Parameters None

Return value None

Description Read RDFAILNOL/H_REG (error byte address), EXPPATW0-3_REG
(expected value), and RDPATW0-3_REG (read value) to display
verification error details on the console.

int smart_ctmadm(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the NVMe-IP

Description Set SMART command to CTMSUBMQ_REG and call exec_ctm function
to start SMART command. Finally, decode and display SMART
information on the console

int wrrd_dev(unsigned int user_cmd)

Parameters user_cmd: 2-Write command, 3-Read command
Return value 0: No error, -1: Receive invalid input or some errors are found.

Description Run Write command or Read command, following in topic 3.1.2.
(Write/Read Command)

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 21

4 Example Test Result

The example test result when running demo system by using 512 GB Samsung 960 Pro is shown
in Figure 4-1.

Figure 4-1 Test Performance of NVMe IP demo by using Samsung 960 Pro SSD

By using PCIe Gen3 on Arria10 SoC board, write performance is about 2100 Mbyte/sec and read
performance is about 3200 Mbyte/sec. Performance by using PCIe Gen2 on ArriaV GX board is
slower than Gen3. Write and read performance on Gen2 are about 1600 Mbyte/sec.

dg_nvmeip_refdesign_intel_en.doc

2020/03/25 Page 22

5 Revision History

Revision Date Description

1.0 5-Aug-16 Initial Release

1.1 16-Dec-16 Change buffer from DDR to Block Memory

1.2 9-May-17 - Use Avalon-ST PCIe Hard IP instead of Avalon-MM
- Add Example test result

2.0 8-Jun-17 Support only 256 Kbyte buffer

2.1 31-Jul-17 Add LFSR pattern

3.0 24-Jul-18 Support Shutdown, SMART and Flush command

3.1 23-Nov-2018 Add dword enable for RAM interface

3.2 11-Feb-2020 Update description

3.3 25-Mar-2020 Add Function list in Test firmware

Copyright: 2016 Design Gateway Co,Ltd.

