
dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23

HCTL-IP RAID0x8 DDR reference design manual
Rev1.0 22-Aug-23

1 Introduction ... 2
2 Hardware overview .. 3

2.1 TestGen .. 5
2.2 RAID ... 9

2.2.1 HSATAIP .. 9
2.2.2 FIFO ... 10
2.2.3 Raid0x8 .. 10

2.3 DdrCtrl .. 14
2.3.1 AxiMtWr .. 15
2.3.2 AxiMtRd.. 18

2.4 CPU and Peripherals .. 20
2.4.1 AsyncCtrl .. 20
2.4.2 AsyncAxiReg .. 21
2.4.3 UserReg ... 22

3 CPU Firmware .. 26
3.1 Identify device command .. 26
3.2 Write/Read command ... 26
3.3 Security erase command .. 27

4 Example Test Result ... 28
5 Revision History .. 29

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 2

HCTL-IP RAID0x8 DDR reference design manual
Rev1.0 22-Aug-23

1 Introduction

Stp#

0

Stp#

1

Stp#

2

Stp#

3

Stp#

4

Stp#

5

Stp#

6

Stp#

7
Stp#

8

Stp#

9

Stp#

10

Stp#

11

Stp#

12

Stp#

13

Stp#

14

Stp#

15

Dev

#0

Dev

#1

Dev

#2

Dev

#3

Dev

#4

Dev

#5

Dev

#6

Dev

#7

8xSATA HCTL-IP +

RAID0 Controller

Stripe size

RAID0x8 SATA Devices

Stp#0-15

RAID0 capacity =

8 x Device capacity

Stp: Stripe

Figure 1-1 RAID0 by 8 SATA devices data format

RAID0 system uses multiple storages to extend total storage capacity and to increase write/read
performance. Assumed that total number of device is N, total storage capacity is equal to N
multiply by amount of storage. Write and read speed are almost equal to N multiply by speed of
one device.

Data format of RAID0 is shown in Figure 1-1. Data stream of the host side are split into a small
stripe and transfer to one device at a time. Stripe size is the data size to store in one device before
switching to other devices.

In the reference design, eight devices are applied to run RAID0 system. Stripe size is equal to 512
byte (one sector). All devices connecting in the system should be same model to match
characteristic and get the best performance and capacity. By using RAID0 reference design, the
total capacity is equal to eight times of one device capacity and the performance result for write
and read are almost eight times of one device performance.

This demo includes DDR to be the buffer of the system to support ultra speed transferring with
sustain rate. DDR is used to be the buffer when the device is not ready to access especially during
flush operation from internal cache in Write command. The system is suitable for the application
which requires sustain rate such as data logger from high-speed A/D.

Before running the reference design, it is recommended to study SATA HCTL-IP datasheet and
single channel demo firstly from following link.
http://www.dgway.com/products/IP/SATA-IP/dg_sata_host_ip_data_sheet_en.pdf
http://www.dgway.com/products/IP/SATA-IP/dg_satahostip_refdesign_en.pdf
http://www.dgway.com/products/IP/SATA-IP/dg_satahostip_instruction_en.pdf

http://www.dgway.com/products/IP/SATA-IP/dg_sata_host_ip_data_sheet_en.pdf
http://www.dgway.com/products/IP/SATA-IP/dg_satahostip_refdesign_en.pdf
http://www.dgway.com/products/IP/SATA-IP/dg_satahostip_instruction_en.pdf

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 3

2 Hardware overview

Figure 2-1 HCTL-IP RAID0x8 with DDR demo hardware

The hardware system can be split into four groups following the interface i.e.

1) TestGen: The example of user logic to write and read data in this reference design is TestGen
module. TestGen module generates test data at sustain rate to DDR in Write command. For Read
command, TestGen also reads and verifies test data from DDR at sustain rate. TestGen uses
256-bit data bus and runs in UserClk domain which is equal to 200 MHz.

2) RAID: Eight SATA HCTL-IPs are applied to control eight SATA-III devices. Raid0x8 arranges
data stored in eight devices as RAID0 format. Raid0x8 decodes the current address to select one
SATA device to transfer data with DDR. Data bus size of RAID0 is 256-bit which is eight times of
SATA HCTL-IP to match data bandwidth with eight SATA devices. Two FIFOs (TxFF and RxFF)
are connected between Raid0x8 and SATA HCTL-IP to convert data bus size.

3) DdrCtrl: DDR controller in reference design uses 512-bit AXI4 bus to be user interface.
AxiMtWr is designed to transfer data from AxiTxFIFO to DDR while AxiMtRd is designed to
transfer data from DDR to AxiRxFIFO. The source of AxiTxFIFO and the destination of
AxiRxFIFO are switched between TestGen and RAID block following the command. For Write
command, Data from TestGen is stored to DDR through AxiTxFIFO and Read data from DDR is
forwarded to RAID block through AxiRxFIFO. For Read command, DDR is written by RAID block
and read by TestGen.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 4

4) CPU: Test operation in the demo is controlled by user through Serial console. CPU firmware is
designed to receive test parameters and the command from user. CPU sets parameters to the
hardware through AXI4-Lite bus. LAxi2Reg has the register sets of test parameters which are
mapped to different address of CPU. LAxi2Reg decodes the address of AXI4-Lite bus to select
the active parameter. For write access, Write data from AXI4-Lite bus is set to the selected
parameter following the address. For read access, Read data from selected parameter is returned
to AXI4-Lite bus. Read access is applied for CPU monitoring and displaying the hardware status
to the user through Serial console.

More details of the hardware are described as follows.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 5

2.1 TestGen

This module is designed to generate Test pattern to WrFf as constant rate in Write command.
For Read command, this module reads data from RdFf as constant rate and verifies the data
with Test pattern. The details of hardware inside TestGen are shown in Figure 2-2.

TestGen

WrPattStart

Cal

Len
TrnLen[47:0]

rEndSize

RdPattStart

rWrTrans

Pulse

Generator

(4-bit counter)

NmtTrnRate[3:0]

DmtTrnRate[3:0]

rTrnRateEn

FF

rWrFfWrEn

rRdFfRdEn

52-bit

Counter

rDataCnt

Pattern

Selector

Address

CounterTrnAddr[47:0]
DEC

LFSR

Counter
rTrnAddr

Header

Inserter

PattSel[2:0]

rWrFfWrData[255:0]

DATA

CMP

RdFfRdData[255:0]

TrnError[0]

1

CMP

==

Blue: Write command

Red: Read command

Black: Write and Read command

FF

S

R

rRdTrans
FF

FF

S

R

RdFfEmpty

FF
TrnError[2]

WrFfFull

FF
TrnError[1]

Figure 2-2 TestGen hardware

Pulse Generator (bottom left block) is designed to generate enable pulse (rTrnRateEn) to
control data rate for writing and reading FIFO. As shown in Figure 2-3, duty cycle of
rTrnRateEn is controlled by NmtTrnRate and DmtTrnRate value, set by user. rTrnRateEn is
used to be enable signal to assert rWrFfWrEn and rRdFfRdEn to ‘1’. So, maximum data rate
of rWrFfWrEn and rRdFfRdEn is equal to (NmtTrnRate/DmtTrnRate) x Clock Frequency (200
MHz) x 256-bit.

Clk

rTrnRateEn

NmtTrnRate

DmtTrnRate

Figure 2-3 rTrnRateEn Timing diagram

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 6

The logic to generate rWrFfWrEn and rRdFfRdEn is shown in upper side in blue and red color
sequentially. For Write command, WrPattStart is asserted to ‘1’ as a pulse. rWrTrans is
asserted to ‘1’ by WrPattStart to start writing FIFO signal. rWrTrans is de-asserted to ‘0’ when
last data is written to FIFO, monitored by comparing rDataCnt (counter to check current data
size) with rEndSize (total data size setting from user). Timing diagram of rWrTrans is shown in
Figure 2-4.

Clk

WrPattStart

rWrTrans

rWrFfWrEn

rDataCnt 0 1 EndSize2 3 EndSize+1

1. rWrTrans is asserted to

‘1’ after WrPattStart=’1'

1

2

2. rWrFfWrEn=‘1’ when rWrTrans=’1' and other control

signals are ready. rWrFfWrEn is asserted to ‘1’ and de-

asserted to ‘0’, controlled by rTrnRateEn.

3

3. rDataCnt is increment,

controlled by rWrFfWrEn

4

4. rWrTrans and rWrFfWrEn=’0'

after rDataCnt=EndSize

Figure 2-4 rWrTrans Timing diagram

rWrFfWrEn is controlled by rWrTrans and rTrnRateEn. When rWrTrans=’1’, rWrFfWrEn timing
is same as rTrnRateEn to write data to FIFO as constant rate. rDataCnt is up-counter,
controlled by rWrFfWrEn during Write command. After last data is transferred, rWrFfWrEn
and rWrTrans are de-asserted to ‘0’ to finish write operation.

Clk

RdPattStart

rRdTrans

rRdFfRdEn

rDataCnt 0 1 EndSize2 3 EndSize+1

1. rRdTrans is asserted to

‘1’ after RdPattStart=’1'

1

2

2. rRdFfRdEn=‘1’ when rRdTrans=’1' and other control

signals are ready. rRdFfRdEn is asserted to ‘1’ and de-

asserted to ‘0’, controlled by rTrnRateEn.

3

3. rDataCnt is increment,

controlled by rRdFfRdEn

4

4. rRdTrans and rRdFfRdEn=’0'

after rDataCnt=EndSize

Figure 2-5 rRdTrans Timing diagram

Similar to rWrTrans, rRdTrans timing diagram is shown in Figure 2-5. rRdTrans is asserted to
allow the logic to read data from FIFO as constant rate. rRdFfRdEn is asserted to ‘1’ when
rRdTrans=’1’ and rTrnRateEn=’1’. rDataCnt is the counter to check total data. rRdFfRdEn and
rRdTrans are de-asserted to ‘0’ after last data is received.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 7

As shown in upper right side of Figure 2-2, TrnError[1] is asserted when WrFfFull is equal to
‘1’ during writing in sustain rate to show that system cannot operate Write command in this
rate correctly. Also, TrnError[2] is asserted when RdFfEmpty is equal to ‘1’ during reading in
sustain rate to show that system cannot operate Read command in this rate correctly.

Block no.1 in lower side of Figure 2-2 shows the logic for generating test pattern in TestGen
module. To create unique test data for each sector, test pattern in this demo is designed as
shown in Figure 2-6.

LBAAddr[47:0] PattD2[31:0] PattD3[31:0]0000

W0 W1 W2 W3

PattD4[31:0] PattD5[31:0] PattD6[31:0] PattD7[31:0]

0x000-0x007

0x008-0x010

…
...

PattD127[31:0]PattD126[31:0]PattD125[31:0]PattD124[31:0]0x1F8-0x1FF

Figure 2-6 Test pattern format in each sector

Test pattern consists of two parts, i.e. 64-bit header in word#0 and word#1 of each sector and
test data in word#2 – word#127. 64-bit header is created by using LBA address value of the
data (LBA address is the address in sector unit). As shown in Figure 2-2, rTrnAddr is loaded to
TestGen module to create 64-bit header value for the 1st sector data. rTrnAddr is increased
after completing to transferring one sector data. So, the logic to create rTrnAddr needs to
monitor rDataCnt and write/read enable signal to know the end of one sector transfer.

TestGen supports to generate five patterns, i.e. 32-bit increment, 32-bit decrement, all 0, all 1,
and 32-bit LFSR. 32-bit increment is generated by using lower-bit of rTrnAddr and rDataCnt.
Decrement pattern is designed by using NOT logic with increment data. To create 32-bit
LFSR counter, 256-bit data is designed by using two sets of 32-bit LFSR pattern as shown in
Figure 2-7.

LBAAddr[15:0] LBAAddrB[31:16] LBAAddrB[15:0] LBAAddr[31:16]

b0

PattD0 PattD1

PattD2(LFSR) PattD3(LFSR)

LFSR Eq: x^31 + x^21 + x + 1

PattD4(LFSR) PattD5(LFSR)

LFSR Eq: x^31 + x^21 + x + 1

PattD6(LFSR) PattD7(LFSR)

LFSR Eq: x^31 + x^21 + x + 1

b15 b16 b31 b32 b47 b48 b63

b64 b95 b96 b127

b128 b159 b160 b191

b192 b223 b224 b255

Figure 2-7 LFSR pattern in TestGen

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 8

Start value of LFSR is designed by using combination signal of 32-bit LBA address and NOT
logic of LBA address (LBAAddrB means NOT logic of LBAAddr signal). PattD0/D2/D4/D6 are
the sequence of LFSR counter set#0 which using LBAAddr[15:0] and NOT LBAAddr[31:16] to
be start value. PattD1/D3/D5/D7 are the sequence of LFSR counter set#1 which using NOT
LBAAddr[15:0] and LBAAddr[31:16] to be start value. 256-bit data is generated within one
clock, so PattD2-D7 must design the logic to calculate 32-bit LFSR pattern as look-ahead
style.

3-bit PattSel signal are used to select one of five test patterns. Header Inserter logic inserts
64-bit header to be the 1st data of each sector. After that, test data from pattern counter is
transferred to rWrFfWrData. In Read command, rWrFfWrData is used to be expected value to
compare with read data from FIFO (RdFfRdData). TrnError[0] is asserted to ‘1’ when data
verification is failed.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 9

2.2 RAID

User interface of RAID is designed by using dgIF typeS format. CMD interface is connected to
LAxi2Reg to receive the parameter from user through Serial console. Data bus size of RAID
block is 256-bit which is connected with AxiRxFIFO and AxiTxFIFO. Another side of RAID is
connected to eight SATA devices. The system includes eight IdenRAMs for receiving Iden I/F
of SATA HCTL#0 - #7. The hardware details of RAID are shown in Figure 2-8.

Raid0x8

…
..

State

M/C

Data

Switch

dgIF typeS (CMD)

dgIF typeS (Data)

LAxi2Reg

AxiRxFIFO

(Write)

DG

SATA-IP

SATA

PHY

(Master)

SATA

HCTL-IP

HSATAIPMt#0

DG

SATA-IP

SATA

PHY

(Slave)

SATA

HCTL-IP

HSATAIPSl#1

HSATAIPSl#7

…
..

TXFF#0

RXFF#0

TXFF#1

RXFF#1

TXFF#7

RXFF#7

256

dgIF typeS (CMD)#0

dgIF typeS (CMD)#1

dgIF typeS (CMD)#7

32

32

32

32

32

32

256

256

256

256

256

256

SATARaid0x8IP

256AxiTxFIFO

(Read)

…

…IdenRAM

x 8

Iden I/F#0

Iden I/F#1

Iden I/F#7

Figure 2-8 RAID hardware

The hardware inside RAID consists of three modules, i.e. Raid0x8, eight sets of FIFO, and
eight sets of HSATAIP.

2.2.1 HSATAIP

HSATAIP is the group of complete HDL for SATA application. It consists of SATA HCTL-IP,
SATA-IP, and SATAPHY. More details of SATA HCTL-IP are described in datasheet.
http://www.dgway.com/products/IP/SATA-IP/dg_sata_host_ip_data_sheet_en.pdf

HSATAIP has two HDL codes because of different SATA PHY. There are two types of SATA
PHY in RAID design, i.e. Master and Slave. All SATA PHYs use same clock source for
transceiver operation. Clock source is created in Master PHY and then forwarded to all Slave
PHYs.

http://www.dgway.com/products/IP/SATA-IP/dg_sata_host_ip_data_sheet_en.pdf

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 10

2.2.2 FIFO

Two FIFOs are applied for one SATA channel. TxFIFO is designed to convert 256-bit data
which is Raid0x8 bus size to 32-bit data which is HSATAIP bus size. FIFO size is 16 kByte, so
it can store data up to 31 sectors. RxFIFO size is same as TxFIFO, but it converts data from
32-bit to 256-bit.

2.2.3 Raid0x8

Raid0x8 consists of state machine for controlling command interface and Data Switch to
controlling data interface.

After receiving new command request from LAxi2Reg, state machine decodes the
parameters and then calculates the address and transfer length of each HSATAIP. After that,
state machine generates command request with the valid address and length to all
HSATAIPs.

Next, state machine is responsible to control Data Switch for selecting the active SATA
channel. State machine needs to calculate the current sector address by loading the start
value from LAxi2Reg and then increased after completing to transfer one sector data with
AxiTxFIFO/AxiRxFIFO. Three lower bit of current sector are used to select SATA channel, i.e.
“000” for HSATAIP#0, “001” for HSATAIP#1, …, “111” for HSATAIP#7.

There are many pipeline registers to switch data bus of each SATA channel. The overhead
time from pipeline register and control signal is about 6 clock cycles for transferring 512-byte
data (16x256-bit). To compensate this overhead time, clock domain to run Raid0x8 must be
more than 150 MHz which is SATA PHY clock. It is recommended to set clock frequency more
than 190 MHz to compensate 27% overhead time (6 / (16+6) = 27%). In the reference design,
Raid0x8 clock frequency is set to 200 MHz.

The user interface of Raid0x8 is shown in Table 2-1. Command and data interface are
designed as dgIF typeS format. The status and Iden port of all SATA HCTL-IP are mapped to
user interface directly to monitor each SATA device status independently.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 11

Table 2-1 Signal description of Raid0x8 (only user interface)

Signal Dir Description

User Interface

RstB In Reset signal. Active low. Please use same reset signal as SATA HCTL-IP.

Clk In User clock. Must use the same clock as SATA HCTL-IP.

dgIF typeS

UserCmd[1:0] In User Command. “00”: Identify device command, “01”: Security erase

“10”: Write device, “11”: Read device.

UserAddr[47:0] In Start address of device to write/read in sector unit (512 byte).

UserLen[47:0] In Total transfer size in the request in sector unit (512 byte). Valid from 1 to (LBASize-UserAddr).

UserReq In Request the new command. Can be asserted only when the IP is Idle (UserBusy=’0’).

Asserted with valid value on UserCmd/UserAddr/UserLen signals.

UserBusy Out IP Busy status. New request will not be allowed if this signal is asserted to ‘1’.

LBASize[47:0] Out Total device capacity in sector unit (512 byte). Default value is 0.

This value is equal to eight times of LBASize value output from IP#0.

UserError Out Error flag. Assert when UserErrorType is not equal to 0.

The flag can be reset only by de-asserting RstB to ‘0’.

UserErrorType[63:0] Out Error status which are mapped from status in each SATA HCTL-IP. One byte is mapped to

UserErrorType[7:0] from one IP. IP#0 is mapped to the lowest bye while IP#7 is mapped to the

highest byte.

[7:0] – Mapped from UserErrorType[7:0] of IP#0.

[15:8] – Mapped from UserErrorType[7:0] of IP#1.

…

[63:56] – Mapped from UserErrorType[7:0] of IP#7.

UserFifoWrCnt[15:0] In Write data counter of User received FIFO. Used to check FIFO space size.

If total size is less than 16-bit, please fill ‘1’ to upper bit.

UserFifoWrEn can be asserted when UserFifoWrCnt[15:5] is not equal to all 1.

UserFifoWrEn Out Write data valid of User received FIFO

UserFifoWrData[255:0] Out Write data bus of User received FIFO. Synchronous to UserFifoWrEn.

UserFifoRdCnt[15:0] In Read data counter of User transmit FIFO. Used to check data available size in FIFO.

If total FIFO size is less than 16-bit, please fill ‘0’ to upper bit.

UserFifoRdEn can be asserted when UserFifoRdCnt[15:4] is not equal to 0.

UserFifoEmpty In FIFO empty flag of User transmit FIFO. This signal is unused in the design.

UserFifoRdEn Out Read valid of User transmit FIFO

UserFifoRdData[255:0] In Read data returned from User transmit FIFO. Valid after UserFifoRdEn asserted one clock

cycle.

Other Interface

TestPin[0-7][31:0] Out Direct mapped from TestPin in each SATA HCTL-IP. Index 0-7 is referred to IP number.

[0]-IP#0, [1]-IP#1, … , [7]-IP#7.

TimeOutSet[31:0] Out Timeout value of all SATA HCTL-IPs. Time unit is following Clk frequency value.

TrnLinkup[7:0] Out Linkup signal from trn_link_up in each SATA-IP. Index 0-7 is referred to IP number.

[0]-IP#0, [1]-IP#1, … , [7]-IP#7.

IdenWrAddr[0-7][6:0] Out Direct mapped from IdenWrAddr in each SATA HCTL-IP. Index 0-7 is referred to IP number.

[0]-IP#0, [1]-IP#1, … , [7]-IP#7.

IdenWrEn[7:0] Out Direct mapped from IdenWrEn in each SATA HCTL-IP. Index 0-7 is referred to IP number.

[0]-IP#0, [1]-IP#1, … , [7]-IP#7.

IdenWrData[0-7][31:0] Out Direct mapped from IdenWrData in each SATA HCTL-IP. Index 0-7 is referred to IP number.

[0]-IP#0, [1]-IP#1, … , [7]-IP#7.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 12

Timing diagram of user interface and Identify device interface are similar to SATA HCTL-IP.
Please see more details from SATA HCTL-IP datasheet. Data interface for RAID operation
are shown as follows.

UserFifoRdCnt[15:0]

TxFifoWrCnt[Ch][15:0]

UserFifoRdData[255:0] D0 D14 D15

Write Command

UserFifoRdEn

TxFifoWrData[Ch][255:0] D0

TxFifoWrEn[Ch]

D1

D14 D15D1

D2 D13

D13D12

 16 clock cycles

(1b) Read side of AxiRxFifo has

at least 1-sector data

(1a) Write side of TxFifo[Ch] has

free space at least 2 sectors

(2) Read 1-sector data from AxiRxFifo after

both FIFOs are ready for transferring

(3) Read data from AxiRxFifo is valid in the next clock

(4) Forward data to TxFifo of active channel

Red color: Signal to interface

with SATA HCTL-IP

<65,504

>=16

Figure 2-9 Raid0x8 data timing diagram of Write command

When user sends Write command to RAID, data is forwarded from AxiRxFIFO to
TxFifo[0]-[7]. One TxFifo is active to transfer one sector data and the active SATA channel is
switched to next channel for transferring next sector following RAID0 behavior. Before
forwarding data, UserFifoRdCnt and TxFifoWrCnt of active channel are monitored to
confirm that at least 1 sector data is stored in AxiRxFIFO and at least 2-sector free space is
available in TxFifo of active channel. UserFifoRdEn is asserted for 16 clock cycles to
transfer 512-byte data continuously.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 13

UserFifoWrCnt[15:0]

RxFifoRdCnt[Ch][15:0]

UserFifoWrData[255:0] D14 D15

Read Command

RxFifoRdData[Ch][255:0] D0

RxFifoRdEn[Ch]

D14 D15D1

D0 D13

D13

D12

 16 clock cycles

UserFifoWrEn

(1b)UserFifoWrCnt shows that at least 2-

sector free space is available in AxiTxFifo.

(1a) RxFifoRdCnt[Ch] shows that at least 1-sector

data is available in RxFifo of active channel

(3) Read data from RxFifo is valid in the next clock

(2) Assert RxFifoRdEn of active

channel to read 512-byte data
(4) 512-byte data from RxFifo

is forwarded to AxiTxFifo

>=16

<65,504

Red color: Signal to interface

with SATA HCTL-IP

Figure 2-10 Raid0x8 data timing diagram of Read command

When user sends Read command to RAID, data is forwarded from RxFifo[0]-[7] to AxiTxFifo,
as shown in Figure 2-10. Similar to Write command, one RxFifo is active for each 512-byte
transfer, and then active SATA channel is switched to the next channel for next sector
transfer. Before forwarding data, UserFifoWrCnt and RxFifoRdCnt of active channel are
monitored to confirm that at least 1 sector data is available in RxFifo of active channel and at
least 2-sector free space is available in AxiTxFifo. UserFifoWrEn is asserted for 16 clock
cycles to transfer 512-byte data continuously.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 14

2.3 DdrCtrl

This module is designed to interface with DDR memory which is the data buffer to support
transferring data as sustain rate in this system. MIG is Xilinx IPcore to control external
memory such as DDR4. The IP includes clock generator to generate many clocks for
interfacing with DDR. So, this reference design uses clock generator inside MIG to create
clock domain for using in the system, i.e. UserClk which is 200 MHz for user logic and CpuClk
which is 100 MHz for CPU system. AxiClk is auto generated by MIG to be clock source for
interfacing with MIG. AxiClk frequency is 300 MHz for running DDR4 at 1200 MHz.

AxiMtWr and AxiMtRd are designed to decode the command request from LAxi2Reg and
transfer data with MIG through AXI4 interface. AxiMtWr is connected to Write port of AXI4 bus
for transferring data from AxiTxFIFO to MIG. AxiMtRd is connected to Read port of AXI4 bus
for transferring data from MIG to AxiRxFIFO. AxiMtWr and AxiMtRd run in AxiClk domain
which is very high frequency, so the logic includes many pipeline registers.

DdrCtrl

512 512

Axi

TxFIFO

Axi

RxFIFO

DDR

DDR Controller (MIG)

AxiMtWr AxiMtRd

512

AXI4

(Write) 512

AXI4

(Read)

Data Data
LAxi2Reg

Cmd Cmd

SysClk
AxiClk

UserClk

CpuClk

Figure 2-11 DdrCtrl hardware

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 15

2.3.1 AxiMtWr

AxiWrReq

AxiWrBusy

AxiAwValid

AxiAwReady

AxiBValid

AxiWrLen[47:0] Length

Counter

Address

Counter

BurstLen

CalrTrnLenCnt

BuffWrCnt[30:9]

AxiFfRdCnt[15:0]

AxiAwLen[7:0]

AxiAwAddr[30:0]

Burst

Counter

AxiwValid

AxiwReady

DEC
rBurstCnt AxiwLast

DEC
rState

Latch

DEC

DEC
AxiFfRdEn

Latch
AxiFfRdData[511:0] AxiwData[511:0]

rAxiBValid

State

M/C

AxiMtWr

Blue: Command signal

Purple: Data signal

Black: State machine

Figure 2-12 AxiMtWr hardware

As shown in Figure 2-12, state machine is designed in AxiMtWr to control the sequence for
write transferring through AXI4 bus interface. The signal of AXI4 can be separated into two
groups, i.e. command and data signals. Command signal is in blue color at upper side and
data signal is in purple color at lower side.

The sequence to transfer AXI4 interface is sending address and control (AxiAwAddr,
AxiAwLen, AxiAwValid), sending data (AxiwData, AxiwValid), and waiting response
(AxiBValid). State machine is designed following AXI4 interface sequence. After new write
request (AxiWrReq) is detected, state machine changes to transfer state. At the same time,
Length counter loads set value of total transfer size (AxiWrLen) and Address counter are
reset to 0 to prepare the new transfer. Before transferring one burst size data, state machine
checks that data in AxiTxFIFO is enough by monitoring AxiFfRdCnt and DDR is not full by
monitoring BuffWrCnt. Then, state machine generates write request to DDR (AxiAwValid) with
the valid value of DDR address (AxiAwAddr) and length (AxiAwLen).

Data from AxiTxFIFO is transferred to DDR by asserting AxiwFfRdEn=’1’ to read data from
FIFO and then asserting AxiwValid=’1’ to transfer data to DDR. Data from AxiTxFIFO is
latched to Flip-Flop before forwarding to DDR (AxiwData) to solve timing constraint problem.
AxiMtWr runs in DdrClk which is high frequency (300 MHz). rBurstCnt is designed to count
the data in one burst transfer for asserting AxiwLast=’1’ when transferring the last data in the
burst. AxiBValid is asserted to ‘1’ by DDR after receive all data in the request.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 16

From above sequence, address, data, and response are transferred sequentially by using
one state machine, not pipelined transfer. To reduce the effect of overhead time from address
and response to data performance, the maximum burst size could be extended to 4kByte size.
BurstLen Cal block calculates burst size to be 512 byte, 1 kByte, 2 kByte, and 4 kByte
depending on FIFO/DDR status, current address alignment, and remaining transfer size.
Using bigger burst size reduces the effect of overhead time to transfer performance. Burst
size is set to 4 kByte when following conditions are met.
1) Remaining transfer size is more than or equal to 4 kByte (rTrnLenCnt[47:3] is not equal to

0).
2) Current address is aligned to 4 kByte (AxiAwAddr[11:0] is equal to 0).
3) AxiFfRdCnt value is more than or equal to 4 kByte (AxiFfRdCnt[15:6] is not equal to 0).
4) BuffWrCnt value shows that at least 8 kByte free space is found (BuffWrCnt[30:13] is not

equal to all 1).
The output of BurstLen Cal is AxiAwLen signal. AxiAwLen is also used to calculate the next
address in Address counter and calculate remaining transfer size in Length counter.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 17

The operation of the logic inside AxiMtWr is displayed as timing diagram in Figure 2-13. In the
example, burst size is equal to 8 for transferring 512 byte data.

Clk

rState stIdle

AxiWrReq

stChk
WrRdy

stGenWrReq

AxiAwValid

AxiAwReady

stWrTrans

AxiFfRdEn

AxiFfRdData[511:0] D0 D1

AxiwData[511:0] D0 D1

D2

AxiwValid

AxiwReady

rBurstCnt[5:0] 7 6 2

rAxiwLast[0]

AxiwLast

D6 D7

D7D6D5

rAxiBValid

1

stWt
Resp

stIdle/
stChkWrRdy

1

2a
3

2b

4

5

6a

6b

7 8

Figure 2-13 AxiMtWr Timing diagram when burst size = 512 byte

After AxiWrReq is asserted to ‘1’, state machine changes to stChkWrRdy to monitor data size
in FIFO and DDR. If FIFO and DDR are ready to transfer one sector data, state machine will
change to next state. stGenWrReq is designed for two functions, i.e. asserting AxiAwValid=’1’
for write request until AxiAwReady=’1’ and asserting AxiFfRdEn=1’ for two clock cycles to
read two data from AxiTxFIFO. After write request is received (AxiAwValid=’1’ and
AxiAwReady=’1’), state machine changes to stWrTrans to transfer 8 data.

AxiwValid is asserted to ‘1’ in stWrTrans with the valid value of AxiwData which stores
previous data of AxiFfRdData. During transferring, rBurstCnt is decrement, controlled by
AxiFfRdEn signal. When rBurstCnt=2 and AxiwReady=’1’, rAxiwLast[0] is asserted to ‘1’ to
pause data reading from FIFO (AxiFfRdEn=’0’). AxiwLast which stores the previous status of
rAxiwLast[0] is asserted with the last data available on the bus in the next transfer cycle to
complete data transfer.

State machine changes to stWtResp to wait AxiBValid asserting to ‘1’ after completing the last
data. State machine changes from stWtResp to stIdle when total data are transferred. If it is
not last transaction, state machine will go back to stChkWrRdy to send next request and next
data to DDR.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 18

2.3.2 AxiMtRd

AxiRdReq

AxiRdBusy

AxiArValid

AxiArReady

AxiRdLen[47:0] Length

Counter

Address

Counter

BurstLen

CalrTrnLenCnt

BuffRdCnt[30:9]

AxiFfWrCnt[15:0]

AxiArLen[7:0]

AxiArAddr[30:0]

AxirValid

DEC
rState

AxiFfWrEn

AxiFfWrData[511:0] AxirData[511:0]

State

M/C

AxiMtRd

Blue: Command signal

Brown: Data signal

Black: State machine

AxirLast

Figure 2-14 AxiMtRd hardware

Comparing to AxiMtWr, the logic inside AxiMtRd is simpler. State machine is designed to
control the sequence of command and data following AXI4 protocol. Command signal is in
blue color at upper side and data signal is in brown color at lower side.

After new read request (AxiRdReq) is asserted to ‘1’, state machine changes to transfer state.
At the same time, Length counter loads total transfer size input (AxiRdLen) and Address
counter is reset to 0 to prepare new transfer. Before transferring data of each burst size, state
machine checks that data in DDR is enough by monitoring BuffRdCnt and free space of
AxiRxFIFO is enough by monitoring AxiFfWrCnt. Then, state machine asserts read request to
DDR (AxiArValid=’1’) with the valid value of DDR address (AxiArAddr) and burst size
(AxiArLen).

Data from DDR is forwarded to AxiRxFIFO when AxirValid=’1’. AxirReady is fixed to ‘1’ to
show ready status for receiving the data from DDR. AxirLast is monitored to check the end
cycle of burst transfer.

Similar to AxiMtWr, BurstLen Cal block is designed to calculate burst size to be 512 byte, 1
kByte, 2 kByte, and 4 kByte depending on FIFO/DDR status, current address alignment, and
remaining transfer size. Using bigger burst size reduces the effect of overhead time to
transfer performance. Burst size is set to 4 kByte when following conditions are met.
1) Remaining transfer size is more than or equal to 4 kByte (rTrnLenCnt[47:3] is not equal to

0).
2) Current address is aligned to 4 kByte (AxiArAddr[11:0] is equal to 0).
3) BuffRdCnt value is more than or equal to 4 kByte (BuffRdCnt[30:12] is not equal to 0).
4) AxiFfWrCnt shows that at least 8 kByte free space is found (AxiFfWrCnt[15:7] is not equal

to all 1).
The output of BurstLen Cal is AxiArLen signal. AxiArLen is also used to calculate the next
address in Address counter and calculate remaining transfer size in Length counter.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 19

The operation of the logic inside AxiMtRd is displayed as timing diagram in Figure 2-15. In the
example, burst size is equal to 8 for transferring 512 byte data.

Clk

rState stIdle

AxiRdReq

stChk
RdRdy

stGenRdReq

AxiArValid

AxiArReady

stRdTrans

AxirValid

AxirData[511:0] D0 D1

AxirLast

D6 D7

stIdle/
stChkRdRdy

1

2
3

4

5

Figure 2-15 AxiMtRd Timing diagram when burst size = 512 byte

After AxiRdReq is asserted to ‘1’, state machine changes to stChkRdRdy to monitor FIFO and
DDR status. If FIFO and DDR are ready to transfer one sector data, state machine will change
to next state. In stGenRdReq state, AxiArValid is asserted to ’1’ for DDR read request. After
read request is received (AxiArValid=’1’ and AxiArReady=’1’), state machine changes to
stRdTrans to wait 8 data from DDR. AxirValid is asserted to ‘1’ with the valid value of AxirData
when DDR returns data. AxirValid and AxirData are bypassed to be FIFO write enable and
FIFO write data. AxirLast is asserted to ‘1’ when transferring the last data. After transferring
the last data and there is no remaining size, state machine changes from stRdTrans to stIdle.
If remaining size is not zero, state machine will go back to stChkRdRdy to start new burst
loop.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 20

2.4 CPU and Peripherals

The hardware is connected to CPU through AXI4-Lite bus, similar to other CPU peripherals.
The hardware registers are mapped to CPU memory address, as shown in Table 2-2. The
control and status registers for CPU access are designed in LAxi2Reg.

LAxi2Reg connects to many hardwares in the system such as DdrCtrl, TestGen, Raid0x8 and
IdenRAM to get the control and status signals of each module. As shown in Figure 2-16, there
are three clock domains applied in this block, i.e. DdrClk which is used to interface with AXI4
bus of DdrCtrl, CpuClk which is used to interface with AXI4-Lite bus of CPU, and UserClk
which is user clock domain for TestGen and RAID0 block.

AsyncAxiReg includes asynchronous circuit between CpuClk and UserClk while AsyncCtrl
includes asynchronous circuit between DdrClk and UserClk. More details of each hardware
are described as follows.

CPU

AsyncAxiReg

AsyncCtrlDdrCtrl

AXI4-Lite bus

Register I/F

Address Decoder

Register Set

(Write)

Data Multiplexer

(Read)

UserReg

TestGen Raid0x8

IdenRAM

x8

CpuClk
DdrClk

UserClk

LAxi2Reg

Figure 2-16 CPU and peripherals hardware

2.4.1 AsyncCtrl

This module is designed to be asynchronous circuit of control and status signals between
DdrClk and UserClk. Two register types are designed to cross clock domain. If the signal is
valid only one clock cycle, latch register will be applied to latch the signal in source clock
domain before transferring to destination clock domain. If the signal is stable for long time,
simple D Flip-Flip will be applied for transferring signal from source clock domain to
destination clock domain.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 21

2.4.2 AsyncAxiReg

This module is designed to convert the signal interface of AXI4-Lite to be register interface.
Also, it supports to convert clock domain from CpuClk to be UserClk domain. Timing diagram
of register interface is shown in Figure 2-17.

To write register, timing diagram is same as RAM interface. RegWrEn is asserted to ‘1’ with
the valid signal of RegAddr (Register address in 32-bit unit), RegWrData (write data of the
register), and RegWrByteEn (the byte enable of this access: bit[0] is write enable for
RegWrData[7:0], bit[1] is used for RegWrData[15:8], …, and bit[3] is used for
RegWrData[31:24]).

To read register, AsyncAxiReg asserts RegRdReq=’1’ with the valid value of RegAddr (the
register address in 32-bit unit). After that, the module waits until RegRdValid is asserted to ‘1’
to get the read data through RegRdData signal.

Clk

RegAddr[13:0]

RegWrData[31:0]

RegWrByteEn[3:0]

RegWrEn

RegRdReq

RegRdValid

RegRdData[31:0]

A0

WD0

BE0

A1

RD0

1

2

3

1. RegWrEn is asserted to ‘1’ ,

synchronous with RegAddr, RegWrData,

and RegWrByteEn for writing register

2. RegRdReq is asserted to ‘1’,

synchronous with RegAddr to

send read register request

3. RegRdValid is asserted to ‘1’

synchronous with RegRdData

to return valid register data

Blue: Output signal

Red: Input signal

Figure 2-17 Register interface timing diagram

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 22

2.4.3 UserReg

As shown in Figure 2-16, after RegWrEn or RegRdReq is asserted to ‘1’ to request write or
read register access, RegAddr is loaded to Address decoder to select the active register. For
write register, RegWrData signal is latched to be the new value for the request register. In this
module, RegWrByteEn is not used, so CPU firmware needs to access the hardware register
by using 32-bit pointer only.

For read request, there are many status signals for CPU access from DdrCtrl, TestGen,
Raid0x8, and IdenRAM. So, data multiplexer includes many pipelines register to select the
read data to return to CPU. RegRdValid is designed by using three D Flip-flops, input by
RegRdReq signal. So, the read access has three clock cycles latency after detecting
RegRdReq signal.

Memory map of control and status signals inside UserReg module is shown in Table 2-2.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 23

Table 2-2 Register Map

Address Register Name Description

Rd/Wr (Label in the “hsataraid8ddrtest.c”)

 RAID0 block

BA+0x000 User Address (Low) Reg [31:0]: Input to be start sector address

(UserAddr[31:0] of dgIF typeS for RAID0) Wr (USRADRL_REG)

BA+0x004 User Address (High) Reg [15:0]: Input to be start sector address

(UserAddr[47:32] of dgIF typeS for RAID0) Wr (USRADRH_REG)

BA+0x008 User Length (Low) Reg [31:0]: Input to be transfer length in sector unit

(UserLen[31:0] of dgIF typeS for RAID0) Wr (USRLENL_REG)

BA+0x00C User Length (High) Reg [15:0]: Input to be transfer length in sector unit

(UserLen[47:32] of dgIF typeS for RAID0) Wr (USRLENH_REG)

BA+0x010 User Command Reg [1:0]: Input to be user command (UserCmd of dgIF typeS for RAID0).

“00”-Identify device, “01”-Security erase, “10”-Write Dev, “11”-Read Dev.

When this register is written, the design generates command request to

RAID0 to start new command operation.

Wr (USRCMD_REG)

BA+0x100 Total device size (Low) Reg [31:0]: Total capacity of RAID0 in sector unit

(LBASize[31:0] of dgIF typeS for RAID0) Rd (LBASIZEL_REG)

BA+0x104 Total device size (High) Reg [15:0]: Total capacity of RAID0 in sector unit

(LBASize[47:32] of dgIF typeS for RAID0) Rd (LBASIZEH_REG)

BA+0x108 User Status Reg [0]: UserBusy of dgIF typeS for RAID0 (‘0’: Idle, ‘1’: Busy)

[1]: UserError of dgIF typeS for RAID0 (‘0’: Normal, ‘1’: Error)

[4:3]: SATA RAID speed from IP

(“00”: No linkup, “11”: SATA Gen3, Others: Not supported)

[15:8]: Linkup signal, directly mapped from each SATA-IP

(bit[8]-IP#0, [9]-IP#1, …, [15]-IP#7).

Rd (USRSTS_REG)

BA+0x110 User Error Type (Low) Reg [31:0]: User error status, directly mapped from UserErrorType[7:0] of

HCTL-IP#0 - #3 (bit[7:0]: IP#0, bit[15:8]: IP#1, …, bit[31:24]: IP#3). Rd (USRERRTYPEL_REG)

BA+0x114 User Error Type (High) Reg [31:0]: User error status, directly mapped from UserErrorType[7:0] of

HCTL-IP#4 - #7 (bit[7:0]: IP#4, bit[15:8]: IP#5, …, bit[31:24]: IP#7). Rd (USRERRTYPEH_REG)

BA+0x120 Test pin of SATA HCTL-IP#0 Reg [31:0]: TestPin[0][31:0] of RAID0x8 which is direct mapped from TestPin of

SATA HCTL-IP#0 Rd (TESTPIN0_REG)

BA+0x124 Test pin of SATA HCTL-IP#1 Reg [31:0]: TestPin[1][31:0] of RAID0x8 which is direct mapped from TestPin of

SATA HCTL-IP#1 Rd (TESTPIN1_REG)

BA+0x128 Test pin of SATA HCTL-IP#2 Reg [31:0]: TestPin[2][31:0] of RAID0x8 which is direct mapped from TestPin of

SATA HCTL-IP#2 Rd (TESTPIN2_REG)

BA+0x12C Test pin of SATA HCTL-IP#3 Reg [31:0]: TestPin[3][31:0] of RAID0x8 which is direct mapped from TestPin of

SATA HCTL-IP#3 Rd (TESTPIN3_REG)

BA+0x130 Test pin of SATA HCTL-IP#4 Reg [31:0]: TestPin[4][31:0] of RAID0x8 which is direct mapped from TestPin of

SATA HCTL-IP#4 Rd (TESTPIN4_REG)

BA+0x134 Test pin of SATA HCTL-IP#5 Reg [31:0]: TestPin[5][31:0] of RAID0x8 which is direct mapped from TestPin of

SATA HCTL-IP#5 Rd (TESTPIN5_REG)

BA+0x138 Test pin of SATA HCTL-IP#6 Reg [31:0]: TestPin[6][31:0] of RAID0x8 which is direct mapped from TestPin of

SATA HCTL-IP#6 Rd (TESTPIN6_REG)

BA+0x13C Test pin of SATA HCTL-IP#7 Reg [31:0]: TestPin[7][31:0] of RAID0x8 which is direct mapped from TestPin of

SATA HCTL-IP#7 Rd (TESTPIN7_REG)

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 24

Address Register Name Description

Rd/Wr (Label in the “hsataraid8ddrtest.c”)

 TestGen block

BA+0x200 Test Pattern Reg [2:0]: Test pattern select

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR Wr (PATTSEL_REG)

BA+0x204 Transfer Ratio Reg Set the sustain rate for write or read access of TestGen module.

[11:8]: the numerator of the ratio, [3:0]: the denominator of the ratio.

Transfer Rate (bit/sec) = (Numerator/Denominator) x UserClk (200MHz)

x 256-bit

Wr (TRNRATIO_REG)

BA+0x208 DDR Read threshold [11:0]: The threshold value of DDR buffer in MB unit. TestGen module

waits until the data in DDR is more than or equal to the threshold value

before start reading the 1st data from DDR as sustain rate when user

sends Read command (USRCMD_REG=”11”). Valid range is 0-4095 MB.

Wr (DDRRDTHR_REG)

BA+0x300 TestGen status [0]: Busy flag of write operation from TestGen. (‘0’: No operation, ‘1’: Write

is operating).

[1]: Busy flag of read operation from TestGen (‘0’: No operation, ‘1’: Read

is operation). Note that this flag is asserted after data in DDR is equal or

more than threshold value, set by DDRRDTHR_REG.

[2]: Busy flag of write operation from DdrCtrl (‘0’: No operation, ‘1’: Write

is operating).

[3]: Busy flag of read operation from DdrCtrl (‘0’: No operation, ‘1’: Write is

operating).

[4]: Verification Fail (‘0’: Normal, ‘1’: Data verification is failed)

[5]: Error from buffer overflow during Write command

(‘0’: Normal, ‘1’: AxiTxFIFO is full during sustain write)

[6]: Error from buffer underflow during Read command

(‘0’: Normal, ‘1’: AxiRxFIFO is empty during sustain read)

Rd PATTSTS_REG

BA+0x320 Expected value Word0 Reg [31:0]: Latch value of expected data [31:0] in TestGen during Read

command Rd (EXPPATW0_REG)

BA+0x324 Expected value Word1 Reg [31:0]: Latch value of expected data [63:32] in TestGen during Read

command Rd (EXPPATW1_REG)

BA+0x328 Expected value Word2 Reg [31:0]: Latch value of expected data [95:64] in TestGen during Read

command Rd (EXPPATW2_REG)

BA+0x32C Expected value Word3 Reg [31:0]: Latch value of expected data [127:96] in TestGen during Read

command Rd (EXPPATW3_REG)

BA+0x330 Expected value Word4 Reg [31:0]: Latch value of expected data [159:128] in TestGen during Read

command Rd (EXPPATW4_REG)

BA+0x334 Expected value Word5 Reg [31:0]: Latch value of expected data [191:160] in TestGen during Read

command Rd (EXPPATW5_REG)

BA+0x338 Expected value Word6 Reg [31:0]: Latch value of expected data [223:192] in TestGen during Read

command Rd (EXPPATW6_REG)

BA+0x33C Expected value Word7 Reg [31:0]: Latch value of expected data [255:224] in TestGen during Read

command Rd (EXPPATW7_REG)

BA+0x340 Read value Word0 Reg [31:0]: Latch value of read data [31:0] in TestGen during Read command

Rd (RDPATW0_REG)

BA+0x344 Read value Word1 Reg [31:0]: Latch value of read data [63:32] in TestGen during Read command

Rd (RDPATW1_REG)

BA+0x348 Read value Word2 Reg [31:0]: Latch value of read data [95:64] in TestGen during Read command

Rd (RDPATW2_REG)

BA+0x34C Read value Word3 Reg [31:0]: Latch value of read data [127:96] in TestGen during Read

command Rd (RDPATW3_REG)

BA+0x350 Read value Word0 Reg [31:0]: Latch value of read data [159:128] in TestGen during Read

command Rd (RDPATW4_REG)

BA+0x354 Read value Word1 Reg [31:0]: Latch value of read data [191:160] in TestGen during Read

command Rd (RDPATW5_REG)

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 25

Address Register Name Description

Rd/Wr (Label in the “hsataraid8ddrtest.c”)

BA+0x358 Read value Word2 Reg [31:0]: Latch value of read data [223:192] in TestGen during Read

command Rd (RDPATW6_REG)

BA+0x35C Read value Word3 Reg [31:0]: Latch value of read data [255:224] in TestGen during Read

command Rd (RDPATW7_REG)

BA+0x360 Data Failure Address (Low)Reg [31:0]: Latch value of failure address [31:0] in byte unit from Read

command Rd (RDFAILNOL_REG)

BA+0x364 Data Failure Address (High)Reg [24:0]: Latch value of failure address [56:32] in byte unit from Read

command Rd (RDFAILNOH_REG)

BA+0x368 Current test byte (Low) Reg [31:0]: Current test data size of TestGen module in byte unit (bit[31:0])

Rd (CURTESTSIZEL_REG)

BA+0x36C Current test byte (High) Reg [24:0]: Current test data size of TestGen module in byte unit (bit[56:32])

Rd (CURTESTSIZEH_REG)

BA+0x370 DDR Write Address Reg [31:0]: Current DDR write address in byte unit (bit[8:0] is fixed to 0 to align

512-byte unit) Rd (DDRWRADDR_REG)

BA+0x374 DDR Read Address Reg [31:0]: Current DDR read address in byte unit (bit[8:0] is fixed to 0 to align

512-byte unit) Rd (DDRRDADDR_REG)

Identify device RAM

BA+0x2000

– 0x21FF

Identify Device Command Data

(IDENCTRL0_REG)

512-byte Identify device data from SATA CH#0

BA+0x2200

– 0x23FF

Identify Device Command Data

(IDENCTRL1_REG)

512-byte Identify device data from SATA CH#1

BA+0x2400

– 0x25FF

Identify Device Command Data

(IDENCTRL2_REG)

512-byte Identify device data from SATA CH#2

BA+0x2600

– 0x27FF

Identify Device Command Data

(IDENCTRL3_REG)

512-byte Identify device data from SATA CH#3

BA+0x2800

– 0x29FF

Identify Device Command Data

(IDENCTRL4_REG)

512-byte Identify device data from SATA CH#4

BA+0x3000

– 0x31FF

Identify Device Command Data

(IDENCTRL5_REG)

512-byte Identify device data from SATA CH#5

BA+0x3200

– 0x33FF

Identify Device Command Data

(IDENCTRL6_REG)

512-byte Identify device data from SATA CH#6

BA+0x3400

– 0x35FF

Identify Device Command Data

(IDENCTRL7_REG)

512-byte Identify device data from SATA CH#7

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 26

3 CPU Firmware

After system boot-up, CPU initializes its peripherals such as UART and Timer. Next, CPU
monitors link up signal of all SATA devices by comparing USRSTS_REG[15:8]=0xFF. Main menu
is displayed after all SATA devices link up.

CPU firmware supports four commands, following USRCMD_REG value, i.e. “00” for Identify
device, “01” for Security erase, “10” for Write, and “11” for Read. More details of the sequence in
each command are described as follows.

3.1 Identify device command

The sequence of the firmware when user selects Identify device command is below.
1) Set USRCMD_REG=”00”. Next, RAID0 sends Identify device command to all SATA

HCTL-IPs. RAID0 busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG value. Bit[0] is de-asserted to ‘0’ when command is completed. Bit[1] is
asserted to ‘1’ when some errors are detected. In case of error condition, there is error
message displayed on the console. If the command is completed, the data from Identify
device command of all SATA devices will be stored in IdenRAMs.

3) CPU reads Identify device data from IdenRAMs which are mapped to IDENCTRL0_REG –
IDENCTRL1_REG7 address. Then, CPU displays the information such as SATA device
model name, security feature set supported, and erase time value on Serial console. Also,
RAID0 device capacity (LBASIZEL/H_REG) is displayed in GB unit on the console.

3.2 Write/Read command

The sequence of the firmware when user selects Write/Read command is below.
1) Receive start address, transfer length, test pattern, sustain rate, DDR threshold value from

user through Serial console. If some inputs are invalid, the operation will be cancelled.
2) Get all inputs and set the value to USRADRL/H_REG, USRLENL/H_REG,

TRNRATIO_REG, DDRRDTHR_REG, PATTSEL_REG, and USRCMD_REG
(USRCMD_REG=”10” for write transfer, and “11” for read transfer).

3) CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring USRSTS_REG[1:0] and PATTSTS_REG[6:0]. PATTSTS_REG[3:0] is
monitored because CPU needs to wait until PattGen module completes to verify all data
from DDR in Read command.
If some bits of PATTSTS_REG[6:5] (buffer overflow/underflow flag) are asserted to ‘1’, the
operation will be cancelled with displaying error message. Next, CPU waits for 10 sec
which is SATA-HCTL timeout value and reads USRSTS_REG[1] to show RAID0 error
status. The error from RAID0 can be caused to buffer overflow and underflow error.
If PATTSTS_REG[4] is asserted to ‘1’, verification error message will be displayed. After
that, CPU still runs until end of operation or user inputs any key.

4) During running command, current transfer size reading from CURTESTSIZE_REG is
displayed every second. Finally, test performance is displayed on Serial console when
command is completed.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 27

3.3 Security erase command

The sequence of the firmware when user selects Security erase command is below.
1) Set USRCMD_REG=”01”. Next, RAID0 sends Security erase command to all SATA

HCTL-IPs. RAID0 busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until command complete by monitoring USRSTS_REG value. Bit[0] is

de-asserted to ‘0’ when command is completed. This operation may use long time to
operate, so there is dummy message displayed on the console every second to show
system alive status. Finally, total time usage is displayed on Serial console when command
is completed.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 28

4 Example Test Result

The example test result when running demo system by using 8x1 TB Samsung 850 Pro is shown
in Figure 4-1.

Figure 4-1 Test Performance of RAID0x8 IP demo by using Samsung 850 Pro SSD

When running 8-ch RAID0 with 8 SATA Gen3 SSDs on KCU105 board, write sustain performance
is about 4,000 Mbyte/sec and read sustain performance is about 4,200 Mbyte/sec.

dg_satahostraid8ddr_refdesign_en.doc

22-Aug-23 Page 29

5 Revision History

Revision Date Description

1.0 13-Mar-18 Initial version release

Copyright: 2018 Design Gateway Co,Ltd.

