
dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 1

TOE1G-IP with CPU reference design
Rev1.1 31-Jul-20

1 Introduction
TCP/IP is the core protocol of the Internet Protocol Suite for networking application. TCP/IP model
has four layers, i.e. Application Layer, Transport Layer, Internet Layer, and Network Access Layer.
As shown in Figure 1-1, five layers are displayed for simply matching with the hardware
implementation on FPGA. Network Access Layer is split into Link and Physical Layer.

Figure 1-1 TCP/IP Protocol Layer

TOE1G-IP implements Transport and Internet layer of TCP/IP Protocol for building Ethernet
packet from the user data which is TCP data to EMAC. TOE1G-IP splits TCP data from the user to
small packet and then inserts TCP/IP header. On the other hand, the received Ethernet packet
from EMAC is extracted by TOE1G-IP. The header of the packet is verified and TCP data is
forwarded to the user logic when the packet is valid. Otherwise, the packet is rejected.

The lower layer protocols are implemented by EMAC-IP and external PHY IC.

The reference design provides the evaluation system which includes simple user logic to transfer
data by using TOE1G-IP. TOE1G-IP is designed to transfer data with PC or another TOE1G-IP on
another FPGA board. To run with PC, the test application is called on PC to send and verify TCP
data via Ethernet connection at high-speed rate. Two test applications are specially designed, i.e.
“tcpdatatest” for half-duplex test (send or receive data test) and “tcp_client_txrx_40G” for
full-duplex test (send and receive data at the same time).

To allow the user controlling the test parameters and the operation of TOE1G-IP demo via UART,
the CPU system is included. It is easy for the user to set the test parameters and monitor the
current status on UART console. The firmware on CPU is built by using bare-metal OS. More
details of the demo are described as follows.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 2

2 Hardware overview

Figure 2-1 Demo Block Diagram

In test environment, two devices are used for 1Gb Ethernet transferring. First device runs in client
mode and another runs in server mode. In the demo, the client device is TOE1G-IP on FPGA
board while the server device can be TOE1G-IP on FPGA board or PC, as shown in Figure 2-1.
When using PC, the test applications (tcpdatatest and tcp_client_txrx_40G) must be run on PC to
transfer data with TOE1G-IP within FPGA.

In FPGA logics, TOE1G-IP connects to Ethernet MAC and external Ethernet PHY to complete all
TCP/IP layer implementation. User interface of TOE1G-IP connects to UserReg within
AsyncAxiReg for both data interface and register interface. Register files of UserReg are split into
two regions, i.e. TOE1G-IP region and the internal test logic region (PattGen and PattVer).
Register files of UserReg are controlled by the firmware operating on the CPU through AXI4-Lite
interface.

Two clock domains are applied in the test design, i.e. CpuClk which is the independent clock for
running the CPU system and MacTxClk which is the clock output from Ethernet MAC. So,
AsyncAxiReg is designed to support asynchronous transfer between CpuClk and MacTxClk.
More details of each module inside the TOE1GCPUTest are described as follows.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 3

2.1 Ethernet PHY

Ethernet PHY is implemented by external PHY chip. The interface of external PHY chip must
be matched to Ethernet MAC. Interface could be selected to be GMII, RGMII, SGMII, or
1000BASE-X. Ethernet speed is fixed to 1 Gbps mode.

2.2 Tri Mode Ethernet MAC or 1G/2.5G Ethernet PCS/PMA

Xilinx provides two Ethernet MAC IPs for running 1Gb Ethernet speed depending on Ethernet
interface type. Tri Mode Ethernet MAC IP is used for GMII or RGMII interface while 1G/2.5G
Ethernet PCS/PMA is used for SGMII or 1000BASE-X interface. More details of the IP are
described in following link.

Tri mode Ethernet MAC
https://www.xilinx.com/products/intellectual-property/temac.html

1G/2.5G Ethernet PCS/PMA
https://www.xilinx.com/products/intellectual-property/do-di-gmiito1gbsxpcs.html

Data interface of Ethernet MAC is designed by 8-bit AXI4 stream which could be connected to
TOE1G-IP directly.

2.3 TOE1G-IP

TOE1G-IP implements TCP/IP stack and offload engine. User interface has two signal groups,
i.e. control signals and data signals. Register interface is applied to set control registers and
monitor status signals. Data signals are accessed by using FIFO interface. More details are
described in datasheet.
https://dgway.com/products/IP/TOE1G-IP/dg_toe1gip_data_sheet_xilinx_en.pdf

https://www.xilinx.com/products/intellectual-property/temac.html
https://dgway.com/products/IP/TOE1G-IP/dg_toe1gip_data_sheet_xilinx_en.pdf

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 4

2.4 CPU and Peripherals

32-bit AXI4-Lite is applied to be the bus interface for the CPU accessing the peripherals such
as Timer and UART. To control and monitor the test system, the control and status signals are
connected to register for CPU access as a peripheral through 32-bit AXI4-Lite bus. CPU
assigns the different base address and the address range to each peripheral for accessing
one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. The base address and the range for accessing the test logic are defined in the CPU
system. So, the hardware logic must be designed to support AXI4-Lite bus standard for
supporting CPU writing and reading. LAxi2Reg module is designed to connect the CPU
system as shown in Figure 2-2.

Figure 2-2 LAxi2Reg block diagram

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32-bit data bus size (similar to
AXI4-Lite data bus size). Additionally, AsyncAxiReg includes asynchronous logic to support
clock crossing between CpuClk domain and MacTxClk domain.

UserReg includes the register file of the parameters and the status signals of test logics,
including TOE1G-IP. Both data interface and control interface of TOE1G-IP are connected to
UserReg. More details of AsyncAxiReg and UserReg are described as follows.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 5

2.4.1 AsyncAxiReg

Figure 2-3 AsyncAxiReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e. LAxiAw* (Write address
channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr* (Read
address channel), and LAxir* (Read data channel). More details to build custom logic for
AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. So, the
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e. Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-3. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock-crossing registers. In the same way, Read
control I/F and Read data I/F of AXI4-Lite bus are latched and transferred to be Read register
interface with clock-crossing registers. In register interface, RegAddr is shared signal for write
and read access, so it loads the value from LAxiAw for write access or LAxiAr for read access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-4.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 6

Figure 2-4 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2] and [3] is equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16] and [31:24] is valid respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. So, the address
can be used for selecting the returned data by using multiple layers of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 7

2.4.2 UserReg

Figure 2-5 UserReg block diagram

The logic inside UserReg has three operations, i.e. Register, Pattern generator (PattGen),
and Pattern verification (PattVer). Register block decodes the address requested from
AsyncAxiReg and then selects the active register for write or read transaction. Pattern
generator block is designed to send 8-bit test data to TOE1G-IP following FIFO interface
standard. Pattern verification block is designed to read and verify 8-bit data from TOE1G-IP
following FIFO interface standard. More details of each block are described as follows.

Register Block
The address range to map to UserReg is split into two areas, i.e. TOE1G-IP register
(0x0000-0x00FF) and UserReg register (0x1000-0x10FF).

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32-bit bus size, so write byte enable (RegWrByteEn) is not used.
To write hardware registers, the CPU must use 32-bit pointer to place 32-bit valid value on the
write data bus.

To read register, one multiplexer is designed to select the read data within each address area.
The lower bit of RegAddr is applied in each Register area to select the data. Next, the address
decoder uses the upper bit to select the read data from each area for returning to CPU. Totally,
the latency of read data is equal to one clock cycle, so RegRdValid is created by RegRdReq
with asserting one D Flip-flop. More details of the address mapping within UserReg module
are shown in Table 2-1.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 8

Table 2-1 Register map Definition

Address Register Name Description

Wr/Rd (Label in the “toe1gip_demo.c”)

BA+0x0000 – BA+0x00FF: TOE1G-IP Register Area

More details of each register are described in TOE1G-IP datasheet.

BA+0x00 TOE_RST_REG Mapped to RST register within TOE1G-IP

BA+0x04 TOE_CMD_REG Mapped to CMD register within TOE1G-IP

BA+0x08 TOE_SML_REG Mapped to SML register within TOE1G-IP

BA+0x0C TOE_SMH_REG Mapped to SMH register within TOE1G-IP

BA+0x10 TOE_DIP_REG Mapped to DIP register within TOE1G-IP

BA+0x14 TOE_SIP_REG Mapped to SIP register within TOE1G-IP

BA+0x18 TOE_DPN_REG Mapped to DPN register within TOE1G-IP

BA+0x1C TOE_SPN_REG Mapped to SPN register within TOE1G-IP

BA+0x20 TOE_TDL_REG Mapped to TDL register within TOE1G-IP

BA+0x24 TOE_TMO_REG Mapped to TMO register within TOE1G-IP

BA+0x28 TOE_PKL_REG Mapped to PKL register within TOE1G-IP

BA+0x2C TOE_PSH_REG Mapped to PSH register within TOE1G-IP

BA+0x30 TOE_WIN_REG Mapped to WIN register within TOE1G-IP

BA+0x34 TOE_ETL_REG Mapped to ETL register within TOE1G-IP

BA+0x38 TOE_SRV_REG Mapped to SRV register within TOE1G-IP

BA+0x3C TOE_VER_REG Mapped to VER register within TOE1G-IP

BA+0x1000 – BA+0x10FF: UserReg control/status

BA+0x1000 Total transmit length Wr [31:0] – Total transmitted byte size. Valid from 1-0xFFFFFFFF.

Rd [31:0] – Current transmitted byte size.

The value is cleared to 0 when USER_CMD_REG is written by user.

Wr/Rd (USER_TXLEN_REG)

BA+0x1004 User Command Wr

[0] – Start Transmitting. Set ‘0’ to start transmitting.

[1] – Data Verification enable

(‘0’: Disable data verification, ‘1’: Enable data verification)

Rd

[0] – Tx Busy (‘0’: Idle, ‘1’: Tx module is busy)

[1] – Data verification error (‘0’: Normal, ‘1’: Error)

This bit is auto-cleared when user starts new operation or reset.

[2] – Mapped to ConnOn signal of TOE1G-IP

Wr/Rd (USER_CMD_REG)

BA+0x1008 User Reset Wr

[0] – Reset signal. Set ‘1’ to reset the logic.

This bit is auto-cleared to ‘0’.

[8] – Set ‘1’ to clear TimerInt latched value

Rd

[8] – Latched value of TimerInt output from IP

(‘0’: Normal, ‘1’: TimerInt=’1’ is detected)

This flag can be cleared by system reset condition or setting

USER_RST_REG[8]=’1’.

[16] – Ethernet linkup status from Ethernet MAC

(‘0’: Not linkup, ‘1’: Linkup)

Wr/Rd (USER_RST_REG)

BA+0x100C FIFO status Rd [15:0] - Mapped to TCPRxFfRdCnt signal of TOE1G-IP

[24] - Mapped to TCPTxFfFull signal of TOE1G-IP Rd (USER_FFSTS_REG)

BA+0x1010 Total receive length Rd [31:0] – Current received byte size.

The value is cleared to 0 when USER_CMD_REG is written by user. Rd (USER_RXLEN_REG)

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 9

Pattern Generator

Figure 2-6 PattGen block

Figure 2-7 PattGen Timing diagram

PattGen is designed to generate test data to TOE1G-IP. rTxTrnEn is asserted to ‘1’ when
USER_CMD_REG[0] is set to ‘0’. When rTxTrnEn is ‘1’, TCPTxFfWrEn is controlled by
TCPTxFfFull by de-asserted to ‘0’ when TCPTxFfFull is ‘1’. rTotalTxCnt is the data counter to
check total data sent to TOE1G-IP. rTotalTxCnt is also used to generate 32-bit incremental
data to TCPTxFfWrData signal. rTxTrnEn is de-asserted to ‘0’ after finishing transferring total
data, set by rSetTxSize.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 10

Pattern Verification

Figure 2-8 PattVer block

Figure 2-9 PattVer Timing diagram

PattVer is designed to read test data from TOE1G-IP with or without data verification,
depending on rVerifyEn flag. When rVerifyEn is set to ‘1’, data comparison is enabled to
compare read data (rRxData is created by TCPRxFfRdData with one-clock latency) to the
expected pattern (rExpPatt). When data verification is failed, rFail is asserted to ‘1’.
TCPRxFfRdEn is designed by using NOT logic of TCPRxFfRdEmpty. TCPRxFfRdData is
valid for data comparison in the next clock. rRxFfRdEn[0] which is one clock latency of
TCPRxFfRdEn is applied to be counter enable of rTotalRxCnt to count total transfer size.
rTotalRxCnt is used to generate rExpPatt.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 11

3 CPU Firmware on FPGA

After FPGA boot-up, welcome message is displayed. 1G Ethernet link up status
(USER_RST_REG[16]) is monitored until link-up is found. Next, user selects the operation mode
of TOE1G-IP to be client or server mode.

To initialize as client mode, TOE1G-IP sends ARP request to get the MAC address from the
destination device. For server mode, TOE1G-IP waits ARP request to decode MAC address and
returns ARP reply to complete initialization process.

If test environment uses two FPGA boards, the operation mode on two TOE1G-IPs must be
different (one is client and another is server). To run with PC, it is recommended to set FPGA as
client mode. When PC receives ARP request, PC always returns ARP reply. It is not simple to
force PC sending ARP request to FPGA.

The software has two default parameters for each operation mode. Figure 3-1 shows the example
of the initialization sequence after system boot-up.

Figure 3-1 Example of initialization sequence in client mode

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 12

There are four steps to complete initialization process as follows.
1) CPU receives the operation mode from user and displays default parameters on the console.
2) User inputs ‘x’ to complete initialization sequence by using default parameters. Other keys are

set for changing some parameters. More details for changing some parameters are described
in Reset IP menu (topic 3.2).

3) CPU waits until TOE1G-IP completes initialization sequence (TOE_CMD_REG[0]=’0’).
4) Main menu is displayed. There are five test menu for user selection. More details of each

menu are shown as follows.

3.1 Show parameters

This menu is used to show current parameters of TOE1G-IP, i.e. operation mode, source
MAC address, destination IP address, source IP address, destination port and source port.
The step to display parameters is as follows.
1) Read all network parameters from each variable in firmware.
2) Print out each variable.

3.2 Reset IP

This menu is used to change TOE1G-IP parameters such as IP address and source port
number. After setting updated parameters to TOE1G-IP register, the CPU resets the IP to
re-initialize by using new parameters. Finally, the CPU monitors busy flag to wait until the
initialization is completed. The step to reset IP is as follows.
1) Display current parameter value on the console.
2) Receive new input parameters from user and check input value whether valid or not.

When the input is invalid, the old value is used instead.
3) Force reset to IP by setting TOE_RST_REG[0]=’1’.
4) Set all parameters to TOE1G-IP register such as TOE_SML_REG, TOE_DIP_REG.
5) De-assert IP reset by setting TOE_RST_REG[0]=’0’.
6) Clear PattGen and PattVer logic by sending reset to user logic (USER_RST_REG[0]=’1’).
7) Monitor IP busy flag (TOE_CMD_REG[0]) until the initialization process is completed

(busy flag is de-asserted to ‘0’).

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 13

3.3 Send data test

Three user inputs are received to set total transmit length, packet size and connection mode
(active open for client operation or passive open for server operation). The operation is
cancelled if some inputs are invalid. During the test, 32-bit incremental data is generated from
the logic and sent to PC or FPGA. Data is verified by Test application on PC (in case of PC <->
FPGA) or verification module in FPGA (in case of FPGA <-> FPGA). The operation is finished
after total data are transferred from FPGA to PC or FPGA. The step to run send data test is as
follows.

1) Receive transfer size, packet size and connection mode from user and verify that the value
is valid.

2) Set UserReg registers, i.e. transfer size (USER_TXLEN_REG), reset flag to clear initial
value of test pattern (USER_RST_REG[0]=’1’), and command register to start data pattern
generator (USER_CMD_REG=0). After that, test pattern generator in UserReg transmits
data to TOE1G-IP.

3) Display recommended parameter of test application running on PC from the current
parameters in the system.

4) Open connection following connection mode value.
a. For active open, CPU sets TOE_CMD_REG=2 and monitors ConnOn status

(USER_CMD_REG[2]) until it is equal to ‘1’.
b. For passive open, CPU waits until connection is opened by PC or FPGA. ConnOn

status (USER_CMD_REG[2]) is monitored until it is equal to ‘1’.
5) Set packet size to TOE1G-IP register (TOE_PKL_REG) and calculate total loops from total

transfer size. Maximum transfer size of each loop is 4 GB. The operation of each loop is as
follows.
a. Set transfer size of this loop to TOE1G-IP register (TOE_TDL_REG). Transfer size is

fixed to 4 GB except the last loop which is equal to the remaining size.
b. Set send command to TOE1G-IP register (TOE_CMD_REG=0).
c. Wait until operation is completed by monitoring busy flag (TOE_CMD_REG[0]) until it is

equal to ’0’. During monitoring busy flag, CPU reads current transfer size from user
logic (USER_TXLEN_REG and USER_RXLEN_REG) and displays the results on the
console every second.

6) Set close connection command to TOE1G-IP register (TOE_CMD_REG=3).
7) Calculate performance and show test result on the console.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 14

3.4 Receive data test

User sets total received size, data verification mode (enable or disable) and connection mode
(active open for client operation or passive open for server operation). The operation is
cancelled when some inputs are invalid. During the test, 32-bit incremental data is generated
to verify the received data from PC or FPGA when data verification mode is enabled. The step
to run receive data test is as follows.
1) Receive total transfer size, data verification mode, and connection mode from user input.

Verify that all inputs are valid.
2) Set UserReg registers, i.e. reset flag to clear test pattern value (USER_RST_REG[0]=’1’)

and data verification mode (USER_CMD_REG[1]=’0’ or ‘1’).
3) Display recommended parameter (similar to Step 3 of Send data test).
4) Open connection following connection mode (similar to Step 4 of Send data test).
5) Wait until connection is closed by PC or FPGA. Connon status (USER_CMD_REG[2]) is

monitored until it is equal to’0’. During monitoring ConnOn, CPU reads current transfer
size from user logic (USER_TXLEN_REG and USER_RXLEN_REG) and displays the
results on the console every second.

6) Read total received length of user logic (USER_RXLEN_REG) and wait until total length is
equal to the set value from user. After total data is received, CPU checks verification result
by reading USER_CMD_REG[1] (‘0’: normal, ‘1’: error). When the error is detected, the
error message is displayed.

7) Calculate performance and show test result on the console.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 15

3.5 Full duplex test

This menu is designed to run full duplex test by transferring data between FPGA and PC or
FPGA in both directions by using the same port number at the same time. Four inputs are
received from user, i.e. total size for both directions, packet size for FPGA sending logic, data
verification mode for FPGA receiving logic, and connection mode (active open/close for client
operation or passive open/close for server operation).

When running the test by using PC and FPGA, the transfer size set on FPGA must be
matched to the size set on test application (tcp_client_txrx_40G). Connection mode on FPGA
when running with PC must be set to passive (server operation).

The test runs in forever loop until the user cancels operation on PC by input Ctrl+C for PC <->
FPGA environment. For FPGA <-> FPGA environment, user cancels operation by input some
keys to the console. The step to run Full duplex test is as follows.
1) Receive total data size, packet size, data verification mode, and connection mode from

user and verify that the value is valid.
2) Display the recommended parameter of test application running on PC from the current

system parameters.
3) Set UserReg registers, i.e. transfer size (USER_TXLEN_REG), reset flag to clear the test

pattern (USER_RST_REG[0]=’1’), and command register to start data pattern generator
with data verification mode (USER_CMD_REG=1 or 3).

4) Open connection following connection mode value (similar to Step 4 of Send data test).
5) Set packet size to TOE1G-IP register (TOE_PKL_REG=user input) and calculate total

transfer size in each loop. Maximum size of one loop is 4 GB. The operation of each loop
is as follows.

a. Set transfer size of this loop to TOE_TDL_REG. Except the last loop, transfer size in
each loop is set to maximum size (4GB) which is also aligned to packet size. For the
last loop, transfer size is equal to the remaining size.

b. Set send command to TOE1G-IP register (TOE_CMD_REG=0).
c. Wait until send command is completed by monitoring busy flag (TOE_CMD_REG[0]) to

be equal to ’0’. During monitoring busy flag, CPU reads current transfer size from user
logic (USER_TXLEN_REG and USER_RXLEN_REG) and displays the results on the
console every second.

6) Close connection following connection mode value.
a. For active close, CPU waits until received transfer size is equal to set value from user.

Then, set USER_CMD_REG=3 to close connection. Next, CPU waits until connection
is closed by monitoring ConnOn (USER_CMD_REG[2])=’0’.

b. For passive close, CPU waits until connection is closed from FPGA or PC by
monitoring ConnOn (USER_CMD_REG[2])=’0’.

7) Check received result and error (similar to Step 6 of Receive data test).
8) Calculate performance and show test result on the console. Return to step 3 to run the test

in forever loop.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 16

3.6 Function list in User application

This topic describes the function list to run TOE1G-IP operation.

void exec_port(unsigned int port_ctl, unsigned int mode_active)

Parameters port_ctl: 1-Open port, 0-Close port
mode_active: 1-Active open/close, 0-Passive open/close

Return value None

Description For active mode, write TOE_CMD_REG to open or close connection.
After that, call read_conon function to monitor connection status until it
changes from ON to OFF or OFF to ON, depending on port_ctl mode.

void init_param(void)

Parameters None

Return value None

Description Set network parameters to TOE1G-IP register from global parameters.
After reset is de-asserted, it waits until TOE1G-IP busy flag is
de-asserted to ‘0’.

int input_param(void)

Parameters None

Return value 0: Valid input, -1: Invalid input

Description Receive network parameters from user, i.e. Mode, Window threshold,
FPGA MAC address, FPGA IP address, FPGA port number, Target IP
address, and Target port number. When the input is valid, the parameters
are updated. Otherwise, the value does not change. After receiving all
parameters, the current value of each parameter is displayed.

Unsigned int read_conon(void)

Parameters None

Return value 0: Connection is OFF, 1: Connection is ON.

Description Read value from USER_CMD_CONNON register and return only bit2
value to show connection status.

void show_cursize(void)

Parameters None

Return value None

Description Read USER_TXLEN_REG and USER_RXLEN_REG and then display
the current transmitted and received size in Byte, KByte, or MByte unit

void show_param(void)

Parameters None

Return value None

Description Display the current value of the network parameters set to TOE1G-IP
such as IP address, MAC address, and port number.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 17

void show_result(void)

Parameters None

Return value None

Description Read USER_TXLEN_REG and USER_RXLEN_REG to display total
transmitted size and total received size. Read the global parameters
(timer_val and timer_upper_val) and calculate total time usage to display
in usec, msec, or sec unit. Finally, transfer performance is calculated and
displayed on MB/s unit.

int toe_recv_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Receive data test following description in topic Error! Reference
source not found.

int toe_send_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Send data test following description in topic Error! Reference
source not found.

int toe_txrx_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Full duplex test following description in topic Error! Reference
source not found.

void wait_ethlink(void)

Parameters None

Return value None

Description Read USER_RST_REG[16] and wait until linkup status is found

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 18

4 Test Software on PC

4.1 “tcpdatatest” for half duplex test

Figure 4-1 “tcpdatatest” application usage

“tcpdatatest” is designed to run on PC for sending or receiving TCP data via Ethernet as
server or client mode. PC of this demo runs in client mode only. User inputs parameter to
select transfer direction and the mode. Six parameters are required, described as follows.
1) Mode: c – PC runs in client mode and FPGA runs in server mode
2) Dir: t – transmit mode (PC sends data to FPGA)

r – receive mode (PC receives data from FPGA)
3) ServerIP: IP address of FPGA when PC runs in client mode (default is 192.168.11.42)
4) ServerPort: Port number of FPGA when PC runs in client mode (default is 4000)
5) ByteLen: Total transfer size in byte unit. This input is used in transmit mode only, so it is

ignored in receive mode. In receive mode, the application is closed when the connection is
destroyed. In transmit mode, ByteLen must be equal to total transfer size set on FPGA
when running received data test menu.

6) Pattern:
0 – Generate dummy data in transmit mode or disable data verification in receive mode.
1 – Generate incremental data in transmit mode or enable data verification in receive
mode.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 19

Transmit data mode
Following is the sequence when test application runs in transmit mode.
1) Get parameters from the user and verify that the input is valid.
2) Create the socket and set socket options.
3) Create the new connection by using server IP address and server port number.
4) Allocate 1 MB memory to be sent buffer.
5) Skip this step if the dummy pattern is selected. Otherwise, generate the incremental test

pattern to send buffer when the test pattern is enabled.
6) Send data out and read total sent data from the function.
7) Calculate remaining transfer size.
8) Print total transfer size every second.
9) Repeat step 5) – 8) until the remaining transfer size is 0.
10) Calculate total performance and print the result on the console.
11) Close the socket and free the memory.

Receive data mode
Following is the sequence when test application runs in receive mode.

1) Follow the step 1) – 3) of Transmit data mode.
2) Allocate 1 MB memory to be received buffer.
3) Read data from the received buffer and increase total received size.
4) This step is skipped if data verification is disabled. Otherwise, received data is verified by

the incremental pattern. Error message is printed out when data is not correct.
5) Print total transfer size every second.
6) Repeat step 3) – 5) until the connection is closed.
7) Calculate total performance and print the result on the console.
8) Close socket and free the memory.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 20

4.2 “tcp_client_txrx_40G” for full duplex test

Figure 4-2 “tcp_client_txrx_10G” application usage

“tcp_client_txrx_40G” application is designed to run on PC for sending and receiving TCP
data through Ethernet by using the same port number at the same time. The application is run
in client mode, so user needs to input server parameters (the network parameters of
TOE1G-IP). As shown in Figure 4-2, there are four parameters to run the application, i.e.

1) ServerIP: IP address of FPGA
2) ServerPort: Port number of FPGA
3) ByteLen: Total transfer size in byte unit. This is total size to transmit and receive data.
4) Verification:

0 – Generate dummy data for sending function and disable data verification for receiving
function. This mode is used to check the best performance of full-duplex transfer.
1 – Generate incremental data for sending function and enable data verification for
receiving function.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 21

The sequence of test application is as follows.
(1) Get parameters from the user and verify that the input is valid.
(2) Create the socket and set socket options.
(3) Create the new connection by using server IP address and server port number.
(4) Allocate 64 KB memory for sent and received buffer.
(5) Generate incremental test pattern to send buffer when the test pattern is enabled. Skip this

step if dummy pattern is selected.
(6) Send data out, read total sent data from the function, and calculate remaining sent size.
(7) Read data from the received buffer and increase total received data size.
(8) Skip this step if data verification is disabled. Otherwise, data is verified by incremental

pattern. Error message is printed out when data is not correct.
(9) Print total sent and received size every second.
(10) Repeat step 5) – 9) until total sent size and received size are equal to ByteLen, set by

user.
(11) Calculate performance and print the result on the console.
(12) Close the socket.
(13) Sleep for 1 second to wait until the hardware completes the current test loop.
(14) Run step 3) – 13) in forever loop. If verification is failed, the application is stopped.

dg_toe1gip_cpu_refdesign_xilinx_en.doc

31-Jul-20 Page 22

5 Revision History

Revision Date Description

1.0 1-Nov-18 Initial version release

1.1 31-Jul-20 Add function list and update register in the firmware

