

UDPxxG-IP Introduction (Xilinx)

Super UDP Speed by hard-wired IP-Core

6-Aug-21

Design Gateway

Page 1

Ver2.0XE

Agenda

- Merit and demerit of UDP protocol
- UDPxxG-IP core overview
- UDPxxG-IP core description
 - Initialization
 - High-speed transmit
 - High-speed reception
- User I/F, Buffer size parameterization
- Reference design
- Resource usage and real performance
- Application example

Page 2

Merit and demerit of UDP protocol

- Merit
 - High-speed and low-latency by minimum overhead
 - Supports 1-to-N multicast and 1-to-All broadcast
 - Suitable for real-time application such as VOD system

• Demerit

- No ACK/retransmit, so data reliability is not guaranteed
- If reliability is necessary, application layer must support it

6-Aug-21

Design Gateway

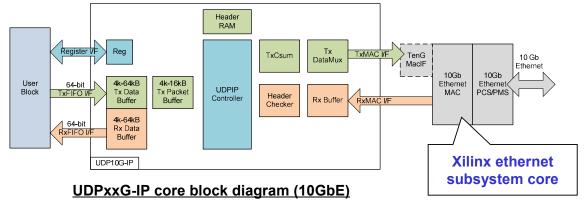
Page 3

UDP implementation problem by CPU

- Problem in performance and latency
 - CPU resource consumption by UDP packet building
 - Check-sum calculation
 - Concatenate header and transmit data

- Bandwidth is not stable due to firmware process
- The problem gets even worse with full duplex
 - CPU needs to process time sharing between Tx&Rx
 - Bandwidth and latency further drops
 - Fatal problem for real time application

UDPxxG-IP core can provide ideal solution!



- Fully hard-wired UDP control for both Tx and Rx
- Supports each line rate of GbE, 10GbE, 25GbE, 40GbE, or 100GbE speed
- Inserts between user logic and Xilinx ethernet subsystem module
- Supports Full Duplex communication

Design Gateway

6-Aug-21

Page 5

UDPxxG-IP core lineup

Family line rate	GbE	10GbE	25GbE	40GbE	100GbE
Artix-7	Ship OK				
Kintex-7	Ship OK	Order OK			
Virtex-7	Order OK	Order OK			
Zynq-7000	Ship OK	Order OK			
Kintex-UltraScale	Order OK	Ship OK		Ship OK	
Kintex-UltraScale+	Order OK	Order OK	Ship OK	Order OK	Ship OK
Zynq-UltraScale+	Order OK	Ship OK		Ship OK	
Virtex-UltraScale+	Order OK				
Alveo		Order OK	Order OK	Order OK	Ship OK

UDPxxG-IP core lineup (as of 6th-Aug-2021)

Ship OK: Can immediate ship Order OK: Can place order

UDPxxG-IP core Advantage 1

Fully hard-wired UDP protocol control

- Possible to build CPU-less network system
- Zero load for CPU
- Support all of Tx only, Rx only, and full-duplex
 - Actual performance over 90% of line rate
- Can even keep some data reliability
 - Tx: Calculate check sum and build header automatically
 - Rx: Discard received Packet if check sum does not match

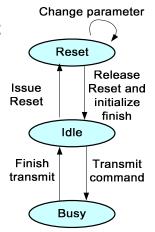
6-Aug-21

Design Gateway

Page 7

UDPxxG-IP core Advantage 2

- Selectable data buffer size
 - Selectable buffer size of memory usage vs. performance
- Supports IP fragment packet reception
 - Receive IP fragment packet when packet order is correct
- Reference design on Xilinx evaluation board
 - Full Vivado project for standard Xilinx board
 - Free bit-file for evaluation before purchase
 - All source code (except IP-core) in design project
- Can support multicast/broadcast transmission
 - Provided by IP-core customization service



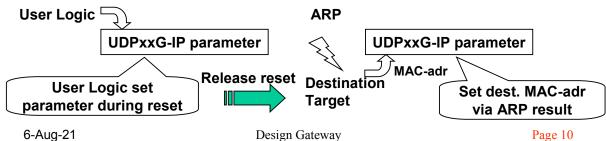
UDPxxG-IP core Operation

- Set parameter (IP-adr&MAC-adr, etc) during Reset
- Release Reset then initialize including ARP
- Idle state after initialization finish, wait command
- Tx operation starts by user command •
- Rx operates at any time except Reset state ٠ (Accepts all Rx packet if parameter match)
- Tx and Rx operates individually (full duplex)
- If want change parameter, move to Reset state (transfer/packet length can change except Busy)

State Diagram

Page 9

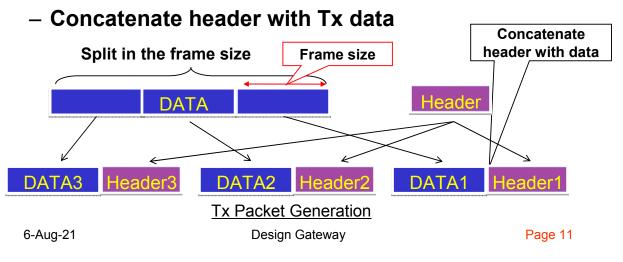
6-Aug-21


core series User Datagram ProtocollP Core

UDPxxG-IP Initialization

Design Gateway

- Set parameter to UDPxxG-IP
 - User logic can set parameter during UDPxxG-IP reset
 - Set IP address, MAC address, and Port number
 - Release reset after parameter setting finish
- UDPxxG-IP executes ARP after reset release
 - Client mode: Issue ARP to the destination target
 - Server mode: Wait ARP from the destination target

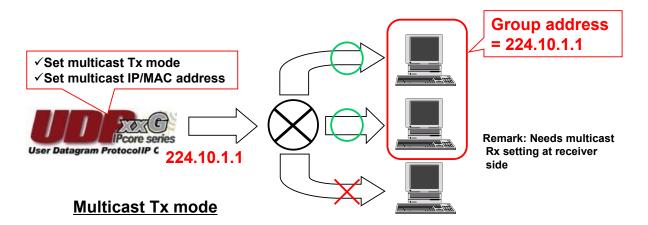


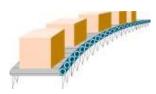
High-Speed Tx

Tx Packet Generation

- User Logic writes Tx data to TxFIFO

- Split Tx data in the frame size
- Calculate check sum and set to the header





Multicast/Broadcast High-Speed Tx (optional)

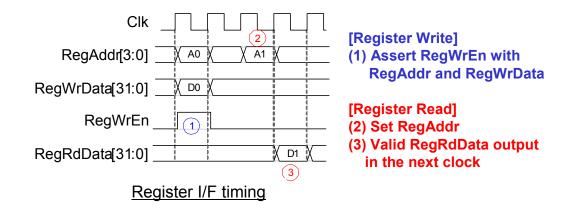
Multicast/broadcast Tx via customization

- Suppress automatic ARP execution
- Set multicast IP/MAC address from user logic

High-Speed Rx

- Rx packet header check
 - Verify all of MAC, IP, and UDP header
 - Receive IP fragment packet when order is correct
- Check sum calculation and verification
 - Calculate check sum in received packet
 - Verify calculated value with header value
 - When mismatch, packet data is discarded

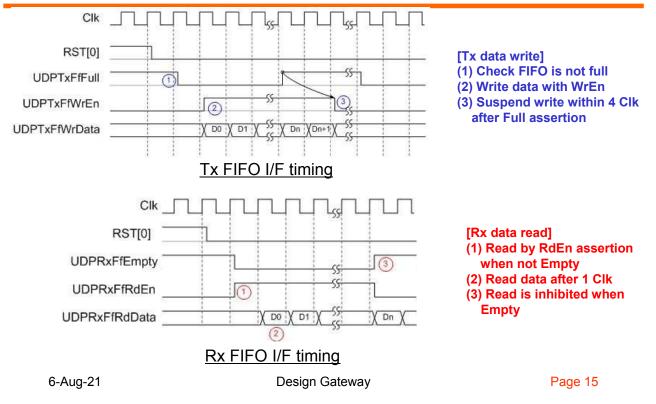
6-Aug-21



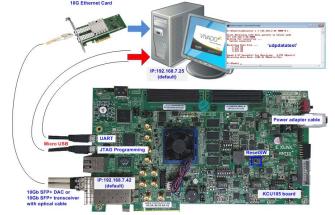
• 3 types of Register I/F, Tx FIFO I/F, and Rx FIFO I/F

Design Gateway

- Register I/F for initial parameter setting and Tx/Rx command
- Tx FIFO I/F and Rx FIFO I/F is standard FIFO interface



Page 13


Buffer Capacity

- Parameterized 3 types of data buffer
 - (1) Tx Data Buffer: Affects Tx performance
 - (2) Tx Packet Buffer: Must set more than max packet size
 - (3) Rx Data Buffer: Affects Rx performance
- User can optimize resource usage and performance
 - Can improve performance if increase buffer size
 - Can save FPGA memory resource if reduce buffer size
 - Performance and memory usage is trade-off relationship

Bit file for evaluation with Xilinx standard board

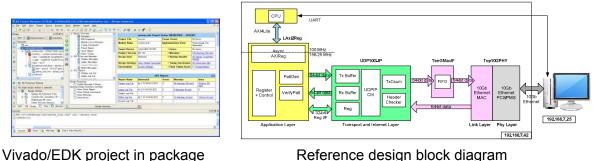
- Real communication check between FPGA board and PC (Two FPGA boards cross connection for 25/40/100GbE case)
- Measure transfer speed performance and data reliability

Evaluation environment example using Xilinx board (KCU105)

6-Aug-21

Design Gateway

Page 17



Reference Design Overview

Vivado design project for real operation •

- Implemented into standard Xilinx board for each device family
- IP-core deliverables include design of evaluation bit file
- All source code (except IP-core) included in full project

Reference design block diagram

Effective Development on Ref. Design

- Vivado project is attached to UDPxxG-IP package
- Full source code (VHDL) except IP core
- Can save user system development duration
 - Confirm real board operation by original reference design.
 - Then modify a little to approach final user product.
 - Check real operation in each modification step.

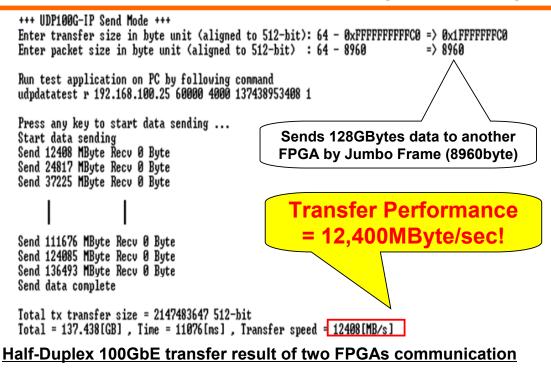
6-Aug-21

Design Gateway

Page 19

Resource Usage

• Each resource usage of GbE/10GbE/40GbE


	_		
Line Rate (Device)	Clock freq.	Logic resource	Max. memory
GbE (Kintex-7)	125MHz	548 Slices	37 BRAM
10GbE (Kintex-7)	156.25MHz	782 Slices	36 BRAM Tile
10GbE (Kintex-US)	156.25MHz	433 CLBs	34.5 BRAM Tile
25GbE (Kintex-US+)	195.3125MHz	482CLBs	20 BRAM Tile
			+ 2 URAM
40GbE (Kintex-US)	300MHz	762 CLBs	34.5BRAM Tile
100GbE (Alveo)	350MHz	1388 CLBs	53 BRAM Tile
	tandalono comr	nilation result	

UDPxxG-IP core standalone compilation result

This result is based on maximum buffer size setting. User can save memory resource by smaller buffer size setting

Transfer Performance (100GbE)

6-Aug-21

Design Gateway

Page 21

Performance (each line rate)

Line rate	Tx (FPGA->PC)	Rx (PC->FPGA)	condition
1GbE	124MByte/s	117MByte/s	FPGA-PC xfer
10GbE	1,206MByte/s	1,192MByte/s	FPGA-PC xfer
Line rate	Half-duplex	Full-duplex	condition
25GbE	3,097MByte/s	3,067MByte/s	2 FPGA Boards xfer
40GbE	4,963MByte/s	4,894MByte/s	2 FPGA Boards xfer
100GbE	12,400MByte/s	12,343MByte/s	2 FPGA Boards xfer

UDPxxG-IP core performance result (jumbo frame) of each line rate

UDPxxG-IP Application

Video-on-Demand via Broadcast

- Stream video transmission in real time
- Requires minimum overhead and latency
- UDPxxG-IP provides best solution

Real time Online game

 Full duplex of game data download and user operation data upload

Design Gateway

- Very low latency required for realistic game
- UDPxxG-IP can cover full duplex within minimum latency

Page 23

6-Aug-21

For more detail

- Detailed documents available on the web site
 - <u>https://dgway.com/UDP-IP_X_E.html</u>
- Contact
 - Design Gateway Co,. Ltd.
 - E-mail :

ip-sales@design-gateway.com

- FAX : +66-2-261-2290

Design Gateway

Revision History

Rev.	Date	Description
1.0E	7-Jan-2020	English version initial release for all UDPxx-IP series
1.1E	14-Jun-2021	UDP25G-IP (25GbE) Release
1.11E	21-Jun-2021	Fixed 25GbE performance description in page23
2.0XE	6-Aug-2021	Coplete full line up of 1/10/25/40/100GbE

6-Aug-21

Design Gateway

Page 25