USB3.0 (Device) IP Protocol & Link Layer Core

Provided with Core

Support

Support Provided by Design Gateway Co., Ltd.

13-May-2015

Product Specification

Core Facts

Design File Formats

Instantiation Templates

Reference Designs &

Constraints Files

Application Notes

Additional Items

Documentation

Rev 1.4E

Reference design manual,

Demo instruction manual

ISE/Vivado/EDK Project

See Reference Design Manual

(Requires AB07-USB3FMC)

Demo on SP605, ML605, KC705, ZC706

Encrypted Netlist

User constraint file

VHDL

Design Gateway Co.,Ltd

54 BB Building 13th FI., Room No.1302 Sukhumvit 21 Rd. (Asoke), Klongtoey-Nua, Wattana, Bangkok 10110, Thailand Phone: (+66) 02-261-2277 Fax: (+66) 02-261-2290 E-mail: sales@design-gateway.com URL: www.design-gateway.com

Features

- Compliant with the USB 3.0 specification revision 1.0
- USB3.0 Device Contoroller
- Imprement link layer and protocol layer
- Physical layer interfaces to PHY chip by TI (TUSB1310A)
- IP core clocks are adjustable (250MHz for PIPE I/F, more than 125MHz for internal)
- Support 16bit PIPE interface
- Support IN/OUT end point up to 15 points
 - 1 point for control
 - 7 points each for IN/OUT
- Support All transmission taps (Control, Bulk, Isochronous and Interruput transmission)
- Simple transaction interface with Host processor or DMA interface
- Reference design available on SP605, ML605, KC705, ZC706 with Design GateWay AB07-USB3FMC Card

		Fmax Slice Slice		Slices				DCM /	Design	
Family	Example Device	(MHz)	Regs	LUTs	Slices	IOR.	GCLK	BRAM	СМТ	Tools
Spartan-6	XC6SLX45T-3FGG484	156	3887	5919	3154	68	2	10	2	ISE14.6
Virtex-6	XC6VLX240T-1FF1156	208	3868	5862	2592	68	2	6	2	ISE14.6
Kintex-7	XC7K325T-2FFG900	256	3837	6292	2518	68	2	6	2	ISE14.6
Zynq-7000	XC7Z045-2FFG900	250	3837	6272	2675	68	2	6	2	ISE14.6

Table 1: Example Implementation Statistics (Control x1, IN x2, OUT x2)

Notes:

1) Actual slice count dependent on percentage of unrelated logic - see Mapping Report File for details

2) Assuming all core I/Os, I/Os for TI_PHY and clocks are routed off-chip and internal signals are enclosed by FF.

3) The number of end port of the core is variable. In case of Bulk transmission, FIFO size can be reduced to one.

* LTSSM: Link Training and Status State Machine, LFPS : Low Frequency Periodic Signaling

Figure 1: USB3.0 (Device) IP Block Diagram

Applications

USB3.0 (Device) IP Core is ideal for use in a USB3.0 supported device system which require high bandwidth up to 5.0Gbps. This IP Core will process almost all USB3.0 protocols (some part of chapter 6, chapter 7 and 8 of the USB3.0 specification) by hardware. It achieves processing by low-end CPU. By setting parameter, this IP Core flexibly supports both a device achieved by minimum end point such as mass storage class and a high-end device which need multiple end points. This IP Core is optimized for saving FPGA internal logic resource by eliminating legacy USB protocol of USB2.0 (480Mbps) or earlier, so that it provides most cost-effective solution for 5Gbps super speed implementation.

General Description

The USB3.0 (Device) IP Core implements link layer and protocol layer. Only setting data address on memory prepared by Host processor, transmission length and other parameter to the register in the IP Core, IP Core will process dividing into packets, adding CRC & Scramble and flow control on USB bus, and return processing result to the register. Data receive process is also same flow.

Host interface of the IP Core consist of simple register access interface, provide simple DMA access interface for memory and able to connect to Microblaze or MPMC (Multi Port Memory Controller) easily.

For connection with PHY chip, it is compliant with standard PIPE interface. So it is just able to connect through Flip-Flop for timing adjustment with FPGA port.

Internal clock in the IP Core is more than 125MHz (125M x 4bytes = 500MB/s) and clock for connection with PHY chip is fixed to 250MHz (500MHz x 2 bytes). However Host interface and DMA interface are able to connect by low frequency clock after synchronization.

Functional Description

The USB3.0 (Device) IP Core is structured by 3 blocks.

Protocol Layer

Protocol Layer manages data on memory assigned by register from Host processor, and divides to USB3.0 packet and sends to Link layer. Receiving is opposite process. This layer manages End-to-End sequence number with host (host bus adaptor auch as PC) and credit process.

- EP0(End point 0)
 Process control transmession specified by USB3.0.

 It includes setup packet receiving, data transmission for control (In/Out) and status transmission.
- EPO(End point Out 1~7) Process BULK-OUT transmission, INTERRUPT-OUT transmission and ISOCHRONOUS-OUT transmission.
- EPI(End point In 1~7) Process BULK-IN transmission, INTERRUPT- IN transmission and ISOCHRONOUS-IN transmission.

• MPP(Multi-purpose point)

It is used for transmission/receiving process of Port-Capabilities / Port-Configuration/Response after changing to U0 status and used for transmission/receiving process of Isochronous Time Stamp(ITS) and Link Management Packet(LMP).

• FIFO

CFIFO is data sending/receiving FIFO for EP0. XFIFO is data transmission FIFO (up to 2pcs/automatic assignment) which is shared at EPI. RFIFO is data receiving FIFO (up to 2pcs/automatic assignment) which is shared at EPO.

• DMAC, Arbiters

DMA request from each end points and packet send/receive request are adjusted and sequencially processed in Protocol Layer.

Link Layer

Link Layer adds CRC (CRC-5 or16 or 32) to packet from Protocol Layer, scrambles it and send it with 8B(x4) symbol to PIPE_IF. Sending and receiving between links and flow management are also processed by this layer.

LSSSM block

Manage link status specified by USB3.0, initialize and do sequential processing of power status.

FLOW block

Flow control between links. Manage transmission status (normal or abnormal), retry and credit process between links.

LFPS block

Send and receive LFPS(Low Frequecncy Periodic Signaling) when initialization or returning from power mode.

Power Mode block

Process send / receive Link Command when switching to power mode.

Transmission/Receiving process block

Add/check CRC, add/cancel scramble and add/check Link Control word.

PIPE Interface

PIPE interface sends/receives data and signal from/to Link Layer to/from PHY, synchronized with PIPE clock.

Transmission block

It converts 8B(x4) symbol to 8B(x2) symbol, executes Elastic process for the symbol and adds SKIP order set. (In case that internal is 125MHz operation, transceiver side also need Elastic procass because of frequency differential with PHY clock.)

Receiving block

It is reverse process of Transmission block.

Control block

Send necessary signal synchronized with PIPE clock, according to state transition of LinkLayer. And It sends signal from PHY to Link Layer synchronized with internal clock.

FPGA Controller

Normally host processor which executes application software is used as FPGA internal controller, and it manages control which is upper than USB device framework (Specification chapter 9 and after) by register access of USB 3.0 Device IP Core. System controller consists of Host processor, DMA interface, memory and so on.

USB3.0 PHY

Use external chip supported USB3.0, such as TUSB1310A by TI which has PIPE_IF.

Core I/O Signals

Core I/O signals are not fixed with specified device and any pins to able to connect to user logic flexibly.All core I/O signals are shown as following table 2. Logic of these signals are active high if no specified.

Table 2: Core I/O Signals.

Signal	Signal Direction		Description					
	Common Interface Signal							
RST_N	In	Res	et USB3.0 (device) IP core. Active low.					
CLK	In	IP Core operating frequency output (125MHz).						
PCLK	In	PIPE clock (250MHz).						
		Inpu	t same frequency (phase is able to adjust by DCM) with PIPE clock generated by PHY chip.					
		Able	to switch to the constant operating clocks (such as CLK) during PCLK stop.					
I_EPO_ENB[7:1]	In	Defi	ne implementation/un-implementation of End Point Out(EPO).					
		Able	to implement up to 7 points. [1] EPO1, [7] EPO7. 1=Implement					
I_EPI_ENB[7:1]	In	Defi	ne implementation/un-implementation of End Point In(EPI).					
		Able	to implement up to 7 points. [1] EPI1, [7] EPI7. 1=Implement					

Signal	Signal Direction		Description					
	PIPE Interface Signal							
O_PIPE_READY	Out	PIP	E clock (PCLK) is operating.					
		Afte	r changing to other state except P3, detect rising of I_PHY_STATUS_ASYN and assert.					
O_RX_TERMINATION	Out	Con	trol RX termination existence (yes or no). 1 = yes, 0 = no.					
		Cha	nge asynchronizing with PCLK (change even though during PCLK stop)					
O_TX_DETRX_ASYN	Out	Con	trol detecting RX termination existence of opposite side.					
		Cha	nge asynchronizing with PCLK, Use it at near P3 state(O_PIPE_READY negate).					
O_TX_EIDLE_ASYN	Out	Con	trol TX signal(SSTXP/SSTXN) to electrical idle state.					
		Cha	nge asynchronizing with PCLK, Use it at near P3 state(O_PIPE_READY negate).					
O_PWR_DOWN_ASYN[Out	Con	trol power state of PHY. 00:P0, 01:P2, 10:P3, 11:P3					
1:0]		Cha	nge asynchronizing with PCLK, Use it at near P3 state(O_PIPE_READY negate).					
O_TX_DETRX_LPBK	Out	Con	trol detecting RX termination existence of opposite side.					
		Cha	nge synchronizing with PCLK, Use it at except near P3 state(O_PIPE_READY assert).					
O_TX_ELECIDLE	Out	Con	trol TX signal(SSTXP/SSTXN) to electrical idle state.					
		Cha	nge synchronizing with PCLK, Use it at except near P3 state(O_PIPE_READY assert).					
O_POWER_DOWN [1:0]	Out	Con	trol power state of PHY. 00:P0, 01:P2, 10:P3, 11:P3					
		Cha	nge synchronizing with PCLK, Use it at except near P3 state(O_PIPE_READY assert).					
I_PWRPRESENT	In	Inpu	t the state of power supplying to VBUS. Asynchronizing with PCLK.					
I_RX_ELECIDLE	In	Inpu	t electrical idle state of RX signal (SSRXP/SSRXN). Asynchronizing with PCLK.					
I_PHY_STATUS_ASYN	In	Inpu	t the signal which control to input PHY status. Asynchronizing with PCLK.					
		Afte	r changing from P3 state, it is used for detecting PCLK operation start.					
I_RX_STATUS011_ASY	In	Inpu	t detected result of RX termination existence of opposite side. Asynchronizing with PCLK.					
Ν		1 = y	yes.					
I_PHY_STATUS	In	Inpu	t the signal which control to input PHY status.Synchronizing with PCLK.					
		Duri	ng O_PIPE_READY is asserted, it displays detecting completion of RX terminal existence.					
I_RX_STATUS011	In	Inpu	t detected result of RX termination existence of opposite side.Synchronizing with PCLK.					
		Valio	d when I_PHY_STATUS = 1. 1=yes.					

13-May-2015

USB3.0 IP Device side Prototol and Link layer Core

O_TX_DATAK[1:0]	Out	TX symbol (8B code). K code (1) or D code (0). Synchronizing with PCLK.
O_TX_DATA[15:0]	Out	Twice of TX symbol (8B code). Synchronizing with PCLK.
I_RX_VALID	In	The timing which RX symbol is valid. 1 = valid. Synchronizing with PCLK.
I_RX_DATAK[1:0]	In	RXsymbol (8B code). K code (1) or D code (0). Synchronizing with PCLK.
I_RX_DATA[15:0]	In	Twice of RX symbol (8B code). Synchronizing with PCLK.

Signal	Signal	Description							
	Host Register Interface Signal								
I LINK REG RE[15:0]	In	Read signal of control register of link layer.							
		lot all 16 lines are implemented. 1 line is 4bytes. Assert 1 cycle synchronized with CLK.							
I_LINK_REG_WE[15:0]	In V	Vrite signal of control register of link layer.							
		lot all 16 lines are implemented. 1 line is 4bytes. Assert 1 cycle synchronized with CLK.							
I_PRTE_REG_RE[15:0]	In 🛛	Read signal of control register of protocol layer.							
		lot all 16 lines are implemented. 1 line is 4bytes. Assert 1 cycle synchronized with CLK.							
I_PRTE_REG_WE[15:0]	In V	Vrite signal of control register of protocol layer.							
		lot all 16 lines are implemented. 1 line is 4bytes. Assert 1 cycle synchronized with CLK.							
I_XPP_REG_RE[511:0]	In	Read signal of control register of each end point.							
		ach end point has 32 lines, however not all 32 lines are implemented. 1 line is 4bytes. Assert 1							
		ycle synchronized with CLK.							
I_XPP_REG_WE[511:0]	In V	Vrite signal of control register of each end point.							
		ach end point has 32 lines, however not all 32 lines are implemented. 1 line is 4bytes. Assert 1							
	(ycle synchronized with CLK.							
O_EP_REG_RD[31:0]	Out	Read data of all control register. Valid at the next cycle when any _RE is asserted.							
I_EP_REG_WD0[31:0]	In	nput write data to control register. Valid at the timing when any _WE is asserted.							
I_EP_REG_WD1[31:0]	In	nput write data to control register. Valid at the timing when any _WE is asserted.							
		n case of using EPI4~7, EPO4~7, you have to connect to the signal which is same logic with							
		_EP_REG_WD0. Connecting to different FF is better for load balancing.							
O_EP_IRQ	Out	nterrupt signal from USB core. 1= Interrupt. Level signal.							
O_EXT_CNTL [1:0]	Out	JSB core external control signal.Control register of link layer can switch ON/OFF.							
O_LANE_POL	Out	X Lane Porarity Inversion. 1: Invert , 0: Not Invert.							
I_USB20_RESET	In	nput reset from USB2.0. 1 = reset. In case of no USB2.0 core, fix to 0.							

Signal	Signa Directi	al Description
		DMA Access Interface Signal
I_DMAC_IDLE	In	Next DMA access start enables.
O_DMAC_REQ	Out	DMA access start. Synchronize with CLK. Assert for 1cycle.
O_DMAC_ADR [31:0]	Out	DMA start address. Valid at O_DMAC_REQ asserted.
O_DMAC_U2M	Out	DMA direction. Valid at O_DMAC_REQ asserted. 0: Memory to USB, 1: USB to Memory.
O_DMAC_LEN[8:0] Out DMA le		DMA length. Valid at O_DMAC_REQ asserted. 0x100: 256words(4K bytes), 0x001: 1word(4bytes)
O_DMAC_BE [3:0]	Out	Valid / Invalid of each bytes.
O_DMAC_DONE	Out	Data transmission completed. Assert 1 cycle after several cycle after sending end data completed.
I_DMAC_M2U_VLD	In	Valid timing of I_DMAC_M2U_DATA in case of DMA from Memory to USB.

I_DMAC_M2U_DATA[31	In	Input data from memory in case of DMA from Memory to USB.
:0] or [63:0]		Data width can adjust by "DMA64_MODE" paramerter ot top module.
		4(or 8) bytes transmission complete (no wait) in the timing I_DMAC_M2U_VLD=1'b1.
I_DMAC_U2M_WAIT	In	Timing which memory cannot accept data in case of DMA from USB to Memory.
O_DMAC_U2M_OUT	Out	Valid timing of O_DMAC_U2M_DATA in case of DMA from USB to Memory.
O_DMAC_U2M_DATA[3	Out	Output data to memory in case of DMA from USB to Memory.
1:0] or [63:0]		Data width can adjust by "DMA64_MODE" paramerter ot top module
		4(or 8) bytes transmission complete in the timing O_DMAC_U2M_OUT=1'b1,
		I_DMAC_U2M_WAIT=1'b0

Notes of PIPE interface

This is general PIPE interface, but must be careful to synchronous/asynchronous of signal when it connects with external PHY chip (see figure 2).

Input signals have signal which references at PIPE clock (PCLK) from PHY is stopping. These signals is direct to pin or the re-synchronized signal (with _ASYN) by FF operated by core internal clock. In case that there is reference signal synchronized PIPE clock during PIPE clock is operating, it must be separate to 2 lines.

Some output signals are also changed even though PIPE clock (PCLK) is stopping. These signals is direct to pin or output with re-synchronized (with _ASYN) by FF operated by core internal clock. In case that there is the output signal synchronized PIPE clock during PIPE clock is operating, multiplex in front of a pin or output by synchronized with FF operated by switching clock.

Figure 2: PIPE interface connection example

Timing Diagram of Host register interface

Register access is shown at Figure 3. 1cycle asserting I_xxx_REG_RE to output read value of the register to O_EP_REG_RD. And write when write value is input to I_EP_REG_WD with 1 cycle asserting I_xxx_REG_WE.

Figure 3 : Signal waveform of host register interface

Timing Diagram of DMA access interface

When I_DMAC_IDLE is asserted, O_DMAC_REQ is also asserted for 1 cycle as shown at Figure 4. In the same time, access address, direction and length are specified.

Data is transferred with flow control by VLD or WAIT signal depend on direction.

When the transmission completed and after several cycles, O_DMAC_DONE is asserted for 1 cycle then DMA access completed.

Figure 4 : Signal waveform of DMA access interface

IP Core control register

IP Core Control register which Host processor can access are shown as following Table 4.

Reg Na	gister ame	R/W	Offset	Description				
Link	Layer R	egister	[ADDRESS=	€C_BASEADDR+LINK_BASE+OFFSET]				
LINK_	CNFG	R/W	0h	Link Layer Configuration Register				
	USB_	VALID	[0]	Enable USB bus (LTSSM) state transition except to SS_Disable (Operation enable state)				
	PMD_ENB [1]		[1]	Enable to receive Power Mode transition request from Host.				
	SCRB_DIS [2]		[2]	Disbale scramble. For debugging.				
	EX	T_CNT	[5:4]	ON/OFF O_EXT_CNTL [1:0] (refering I/O signal).				
	U2_IN/	ACT_C	[15:8]	Set the count time (U2_Inactive_timer) transiting from U1 to U2.				
		NT		Value=Actual time/(USB_CLKx 0x10000)				
LINK_	CNTL	W	1h	Link Layer Control Register. Instructed if "1" is written. Set 1-bit only(one-hot) at same time.				
				No described bits should be written "0".				
	GO_F	RXDET	[0]	Make USB bus state (LTSSM) transit from SS_Disable to Rx_Detect_Active (Operation start).				
				LINK_CNFG[USB_VALID] must be ON before.				
	GO_	RCOV	[3]	Transit from Active_U0 state to Recovery state.				
	GO_PM	ID_NU	[9:8]	Set Power Mode level for transiting by GO_PMD. 01:U1, 10:U2, 11;U3				
	Μ							
	GC	D_PMD	[10]	Request transition to Power Mode. Success or Not are depend on Host side status.				
	(GO_U0	[11]	Order to return from Power Mode (Active_U1/U2/U3).				
LINK_	IRQE	R/W	2h	Link Layer Interrupt Register.				
		IRQ	[0]	Interruption requesting. Read Only.				
		ENB	[1]	When IRQ=1, Interrupt signal to external (referring O_EP_IRQ _o I/O signal) is ON.				
LINK_	LTSSM	R	3h	Link Layer Status Register.				
		RCOV	[6:0]	The reason why Link Layer transit to Recovery state. Kept during LINK_LTSSM[7] is ON.				
	IRQ_FA	CTOR	[15:7]	Cause of Link Layer interruption. State of Link Layer is possible to change without command from				
				CPU. When any bit is ON, LINK_IRQE[IRQ] is also ON. Clear by 1 write to the bit.				
	L	TSSM	[28:24]	Current state of Link Layer. The states are compliant with USB3.0 specification.				
				Code allocation, which is implementation specific, is not disclosed in here				
	DEV_A	DR_OF	[30]	USB device address is 0 (un-setting). The device address will be cleared by hardware when Link				
		F		Layer status transits to SS_Disable,Rx_Detect_Reset.				
	VBU	S_OFF	[31]	Current VBUS is OFF.				

Table 4: IP Core control register

Reg	gister	R/W	Offset	Description			
Na	ame						
Proto	Protocol Layer Register [ADDRESS=C_BASEADDR+PRTE_BASE+OFFSET]						
PRTE	_CNFG	R/W	0h	Protocol Layer Configuration Register			
	DEV	/_ADR	[6:0]	Set device address of USB bus. The device address will be cleared by hardware when Link Layer			
				status transits to SS_Disable,Rx_Detect_Reset.			
PRTE	_CNTL	W	1h	Protocol control register. Instructed if "1" is written. Set 1-bit only(one-hot) at same time.			
				No described bits should be written "0"			
	ARBT_F	RESET	[0]	Arbiter reset of Protocol Layer. For debugging.			
PRTE	_IRQE	R/W	2h	Protocol Layer Interrupt Enable Register.			

		EP0	[0]	Enable interruption from EP.
		EPO	[7:1]	Enable interruption from EPO1~7. [17]: EPO1, [23]:EPO7
		MPP	[16]	Enable interruption from MPP.
		EPI	[23:17]	Enable interruption from EPI1~7. [1]: EPI1, [7]:EPI7
PRTE	_IRQ	R	3h	Protocol Layer interrupt Register.
		EP0	[0]	Under requesting interruption from EP. When applicable IRQE bit is 1, interrupt signal for external
				will be ON.
		EPO	[7:1]	Under requesting interruption from EPO1~7. When applicable IRQE bit is 1, interrupt signal for
				external will be ON. [1]: EPO1, [7]:EPO7
		MPP	[16]	Under requesting interruption from MPP. When applicable IRQE bit is 1, interrupt signal for external
				will be ON.
		EPI	[23:17]	Under requesting interruption from EPI1~7. When applicable IRQE bit is 1, interrupt signal for
				external will be ON. [1]: EPI1, [7]:EPI7
DMA_	BASE	R/W	4h	DMA Base Register.
		BASE	[31:28]	Upper bit of memory address for DMA.

Re	gister ame	R/W	Offset	Description
End Point Zero (EP0) Register)) Register	[ADDRESS=C_BASEADDR+XP_BASE+(0x80x0)+0x000+OFFSET]
EP0_	CNFG	R/W	00h	EP0 Configuration Register.
		VALID	[0]	EP operation enables. Even it is not enable, Setup Data will be received correctly, transit
				to "SETUP_IP" state and INVALID is ON when receiving Setup DP packet.
				When clearing SETU_IP" state, WRDY packet will be received.
	AUTO_S	SETUP	[1]	If this bit is ON,
				Transit from SETUP without Software instruction and return SETUP acknowledge to Host.
	AUTO_F	RESUL	[2]	If this bit is ON,
		Т		Transit from RESULT without Software instruction and return to IDLE state.
	AUTO_	STALL	[3]	If this bit is ON,
		ED		Transit from STALLED without Software instruction and return STALL acknowledge to Host.
EP0_	CNTL	R/W	01h	EP0 control register. Show status and update all bits of [31:16].
				Requesting interrupt if any bit in [13:0] is ON. [23:16] show detected events. [31:24] show
				transitional events.
EP0_	CLR	W	02h	EP0 control register clear. Clear applicable bit by 1 writing.
EP0_	SET	W	03h	EP0 control register set. Set applicable bit by 1 writing.
	R	ESULT	[0]	RESULT state. When clearing it, final ACK packet will be received. And then return to IDLE.
				When STALL is ON, STALL packet will be returned. When VALID is OFF, NRDY packet will be
				returned.
	S	SETUP	[1]	SETUP in progress state. Setup DP packet is received. SETUP0/1 register store 8 bytes contents.
				ACK packet (NumP=1) will be returned when clearing.
				However, when RETRY is ON (Setup DP packet receiving error), retry is attached. When INVALID
				is ON (VALID reference), NumP=0 will be returned. After that, it will transit to specified state
				following INRDY/OUTRDY etc.
	STALLED [8]		[8]	STALLED state. STALL packet will be returned when clear.
	DEFFERED [9]		[9]	DEFFERED state. Transit to this state when the packet attaching Deffered bit is received. ERDY
				packet will be returned and transit to specified state when clearing.
	WRDY [10]		[10]	WRDY state.(waiting ERDY) After sending NRDY packet etc(flow state), become to the status.
				ERDY packet will be returned and transit to specified state when clearing.
	WAIT_	_RECV	[14]	Waiting for any packet. Valid when BUSY is ON.
		BUSY	[15]	It is ON except (IDLE state or [13:0] state). When WAIT_RECV is ON, Clearing this bit to return to

USB3.0 IP Device side Prototol and Link layer Core

				IDLE. And return to IDLE state when both this bit and [14] are cleared at same time.
		STALL	[16]	STALL packet is received or some abnormal is detected.
		OVER	[17]	Traffic of Host is larger than specified in EP0_DLEN. (Device side is fewer.)
	ι	JNDER	[18]	Traffic of Host is fewer than specified in EP0_DLE. (Device side is more.)
	SEND_	STALL	[19]	Send STALL at STALLED state automatically if AUTO_STALLED is enable.
	F	RETRY	[24]	Error exists in received DP packet (include SetupDP packet).
	IN	IVALID	[25]	Receive Setup DP packet when VALID is OFF.
		NRDY	[27]	Send NRDY from RESULT state.
EP0_	DLEN	R/W	04h	EP0 data length setting register.
		DLEN	[20:0]	Data length.
		EOB	[29]	Add EOB (End Of Burst) bit to end of packet when IN transmission.
	OL	JTRDY	[30]	OUT transmission (from Host to Device) ready.
		INRDY	[31]	IN transmission (from Device to Host) ready.
EP0_	PLEN	R	05h	EP0 data length result register
		PLEN	[20:0]	Length of actual transferred data.
	OL	JTRDY	[30]	OUT transmission (from Host to Device) ready.(copy of DLEN register)
		INRDY	[31]	IN transmission (from Device to Host) ready.(copy of DLEN register)
EP0_	BFFR	R/W	06h	EP0 data length buffer (memory address) register
	E	BADDR	[27:8]	Start address of the memory for data input/output.
EP0_	SEQN	R/W	07h	EP0 sequence number register
		SEQN	[4:0]	Current sequence number of packet. Writable, but normally no need.
EP0_	SETUS	R/W	09h	EP0 setup data register 0
0				
EP0_	SETUS	R/W	0Ah	EP0 setup data register 1
1				

Register Name		R/W	Offset	Description
End	Point Ou	ut (EPO)	Register	[ADDRESS=C_BASEADDR+XP_BASE+(0x80×N)+0x000+OFFSET]
EPO_	CNFG	R/W	00h	EPO Configuration Register.
		VALID	[0]	EP operation valid. When invalid and DPpacket is received, NRDY packet will be sent and then WRDY state.
	15	SOCHR	[1]	Isochronous mode transmission
	AGGR		[2]	Special mode that immediately sends ACK packet before IP core completes received DP packet data transfer to the main memory.
	AUTO_	STALL	[3]	If this bit is ON,
		ED		Transit from STALLED without Software instruction and return STALL acknowledge to Host.
		BURST	[18:16]	Set burst length.4~1. Normally "4", other setting for debug.
	FIF	D_REQ	[30]	Arbitration request of receiving FIFO of EPO. For debugging. Read only.
	FIFO_LOC		[31]	The mode which EPO occupies FIFO. For debugging.
EPO_	EPO_CNTL F		01h	EPO control register. Show status and update all bits of [31:16]. Requesting interrupt if any bit in [13:0] is ON. [23:16] show detected events. [31:24] show transitional events.
EPO_	CLR	W	02h	EPO control register clear. Clear applicable bit by 1 writing.
EPO_	SET	W	03h	EPO control register set. Set applicable bit by 1 writing.
		COMP	[0]	COMP state (transmission completed). Clear it to return to IDLE. OUTRDY will be cleared. When extra DP packet is received, transit to NRDY.

	STAL	LED	[8]	STALLED state. Return STALLpacket when clearing.
	DEFFE	RED	[9]	DEFFERED state. Transit to this state when the packet attaching Deffered bit is received. ERDY
				packet will be returned and transit to specified state when clearing.
	W	RDY	[10]	WRDY state. After sending NRDY packet etc (flow state), become to the status. ERDY packet will
				be returned and transit to specified state when clearing.
	Ν	RDY	[11]	NRDY state. Under sending NRDYpacket. After a while, transit to WRDY state.
	WAIT_R	ECV	[14]	Waiting for any packet. Valid when BUSY is ON.
	В	USY	[15]	It is ON except (IDLE state or [13:0] state). When WAIT_RECV is ON, Clearing this bit to return to
				IDLE. And return to IDLE state when both this bit and [14] are cleared at same time.
	ST	TALL	[16]	STALL packet is received or some abnormal is detected.
	0	VER	[17]	Traffic of Host is a lot. (Device side is fewer.)
	UN	DER	[18]	Traffic of Host is a few. (Device side is more.)
	RE	TRY	[24]	Error exists in received DP packet (include SetupDP packet).
	INV	ALID	[25]	When IDLE state, ACKpacket is received at the state that DPpacket cannot be received. (VALID or OTRDY is OFF)
EPO_	DLEN	R/W	04h	EPO data length setting register
	D	DLEN	[20:0]	Data length.
	OUT	RDY	[30]	OUT transmission (from Host to Device). Cleared by COMP state (passing NRDY, ERDY state).
EPO_	PLEN	R	05h	EPO data length result register
	Р	PLEN	[20:0]	Actual transferred data length. Except 0 means a data is received.
	OUT	RDY	[31]	OUT transmission (from Host to Device). (Copy of DLENregister)
EPO_	BFFR	R/W	06h	EPO data length buffer (memory address) register
	BA	DDR	[27:8]	Start address of the memory for data input/output.
EPO_	SEQN	R/W	07h	EPO sequence number register
	COMP_S	EQN	[4:0]	Sequence number of transferred packet (ACK sent). Writable, but normally unnecessary.
	BFR_SEQN		[12:8]	Sequence number of stored packet in buffer (memory). Writable, but normally unnecessary.
	RCV_S	EQN	[20:16]	Sequence number of received packet. Writable, but normally unnecessary.

Register Name		R/W	Offset	Description	
End Point In (EPI) Register [ADDRESS=C_BASEADDR+XP_BASE+(0x80×N)+0x400+OFFSET]					
EPI_0	CNFG	R/W	00h	EPI Configuration Register.	
		VALID	[0]	EP operation valid. When invalid and ACKpacket is received, NRDY packet will be sent and then WRDY state.	
	IS	OCHR	[1]	Isochronous mode transmission.	
	RESTART		[2]	EPI will restart and be waiting for receiving when ACK(NumP=0) packet is sent before Host does not reach to setting transmission length yet. In case of OFF, UNDER will be ON and then transit to COMP state.	
	AUTO_	STALL	[3]	If this bit is ON,	
		ED		Transit from STALLED without Software instruction and return STALL acknowledge to Host.	
	E	BURST	[18:16]	Set burst length. Set 4~1. Normally "4", other setting for debug.	
	FIFC	D_REQ	[30]	Arbitration request of sending FIFO of EPI. For debugging. Read only.	
	FIFC	D_LOC	[31]	The mode which EPI occupies FIFO. For debugging.	
EPI_0	ONTL	R/W	01h	EPI control register. Show status and update all bits of [31:16].	
				Requesting interrupt if any bit in [13:0] is ON. [23:16] show detected events. [31:24] show transitional events	
EPL CLR		W	02h	FPI control register clear. Clear applicable bit by 1 writing.	
EPI_SET		W	03h	EPI control register set. Set applicable bit by 1 writing.	

		COMP	[0]	COMP state (transmission completed). Clear it to return to IDLE. INRDY will be cleared. When
				extra ACK packet is received, transit to NRDY. When DP packet with EOB is sent, transit to
				WRDY.
	ST	ALLED	[8]	STALLED state. Clear it to return STALLpacket.
	DEF	FERED	[9]	DEFFERED state. Transit to this state when the packet attaching Deffered bit is received. ERDY
				packet will be returned and transit to specified state when clearing.
		WRDY	[10]	WRDY state. After sending NRDY packet etc (flow state), become to the status. ERDY packet will
				be returned and transit to specified state when clearing.
		NRDY	[11]	NRDY state. Under sending NRDYpacket. After a while, transit to WRDY state.
	WAIT	_RECV	[14]	Waiting for any packet. Valid when BUSY is ON.
		BUSY	[15]	It is ON except (IDLE state or [13:0] state). When WAIT_RECV is ON, Clearing this bit to return to
				IDLE. And return to IDLE state when both this bit and [14] are cleared at same time.
		STALL	[16]	STALL packet is received or some abnormal is detected.
		OVER	[17]	Traffic of Host is a lot. (Device side is fewer.)
		UNDER	[18]	Traffic of Host is a few. (Device side is more.)
		RETRY	[24]	ACKpacket with Retry is received.
	II	NVALID	[25]	When IDLE state, ACKpacket is received at the state that DPpacket cannot be sent. (VALID or
				INRDY is OFF)
	REST	ART_IP	[26]	RESTART is processing.
EPI_D	DLEN	R/W	04h	EPI data lendth setting register
		DLEN	[20:0]	Data length.
		EOB	[29]	When IN transmission, Add EOB(End Of Burst) bit to end packet.
		INRDY	[31]	IN transmission (from Device to Host). Cleared by COMP state (passing NRDY, ERDY state).
EPI_F	PLEN	R	05h	EPI data length result register
		PLEN	[20:0]	Actual transferred data length. Except 0 means a data is sent.
		INRDY	[31]	IN transmission (from Device to Host). (Copy of DLENregister)
EPI_E	BFFR	R/W	06h	EPI data length buffer (memory address) register
		BADDR	[27:8]	Start address of the memory for data input/output.
EPI_S	SEQN	R/W	07h	EPI sequence number register
	COMP	_SEQN	[4:0]	Sequence number of transferred packet (ACK received). Writable, but normally unnecessary.
	BFR	_SEQN	[12:8]	Sequence number of taken packet from buffer (memory). Writable, but normally unnecessary.
	TRN	_SEQN	[20:16]	Sequence number of transferred packet. Writable, but normally unnecessary.
	NUM	_SEQN	[28:24]	Sequence number of the packet which has credit by ACK. Writable, but normally unnecessary.

USB3.0 IP Device side Prototol and Link layer Core

Reg	gister	R/W	Offset	Description
Multi		o Point (
wiulu	ruipos		MIEF) Keç	
MPP_	CNFG	R/W	00h	MPP Configuration Register.
		TRNS	[0]	Send packet from MPP. It is cleared when completed. When being Active_U0, send Port
				Capabilities, Port Configuration Response with automatically ON/OFF.
MPP_	_THD0	R/W	04h	MPP sending packet 0
MPP_	_THD1	R/W	05h	MPP sending packet 1
		THD0/1	[31:0]	Data of sending packet
MPP_	_RHD0	R/W	06h	MPP receiving packet 0.
MPP_	_RHD1	R/W	07h	MPP receiving packet 1.
		RHD0/1	[31:0]	Data of receiving packet
MPP_	RCVD	R/W	08h	EPI sequence number register
	MISC	C_RCNT	[3:0]	When Receiving packet, it will count up +1. After 0xF, return to 0x0. Writable .

MISC_RCVD_H	[7]	Receive any packet. ON: interruption request. Writable
PCFG_RCVD	[30]	After Active_U0, receive Port Configuration.
PCAP_RCVD	[31]	After Active_U0, receive Port Capabilities.

Register Map

Core register location connecting I_xxx_REG_RE/WE[..] in sequence of address is shown as figure 5.

Figure 5 : Address map of IP-Core internal register

IP Core control step

This is the summary of the IP Core control step.

USB bus initialization

When device is connected with USB bus, bus operation is started. The step until U0 state is as following.

Check ON of VBUS by LINK_LTSSM[VBUS_OFF]

Operation ready by LINK_CNFG[USB_VALID].

Order state transition to Rx_Detect_Active state by LINK_CNTL[GO_RXDET]

④ Automatic link if host side is also operation ready

If it is Active_U0 state by LINK_LTSSM[LTSSM], the linking is successful. If it returns to SS_disable, go to (2) and retry.

Until USB device configured

The step until USB device configured state by control transmission by EP0 after linking is successful, is as following.

EP0_CNFG[VALID] makes EP0 operation ready

- □ Receive SetupDP packet to become SETUP state
- □ First SetupDP will be SET_ADDRESS and no data transmission
- □ Receive STATUS packet to be RESULT state and send final ACK packet

Set device address to PRTE_CNFG[DEV_ADR]. Hardware becomes Address state

After that, operate control transmission such as SetupDP packet several times

- In case that control transmission has data transmission, set send data to memory (IN transmission) or keep receiving buffer at memory (OUT transmission) and order to EP0_BFFR and EP0_DLEN
- □ After complete IN/OUT transmission, receive STATUS packet. After that, same as no data transmission

Finally receive SET_CONFIGURATION to become Configured state

BULK_IN, BULK_OUT transmission of USB device

This is the transmission by using BULK_IN(EPI), BULK_OUT(EPO) after device is configured state. Each transmission are differenet for every device class. Following step is for BULK_OUT, but the step for BULK_IN is also nearly same.

Set VALID to ON, and set burst length by EPO_CNFG

Keep receiving buffer in memory and order ot EPO_BFFR and EPO_DLEN Set estimation data length (or more) to DLEN

If something are received, PLEN shows receiving data length. So check receiving buffer. Clear COMP state and return to (2).

Core verification method

USB3.0 IPdevice IP Core logic can be verified by SP605 Xilinx evaluation board together with AB07-USB3FMC adapter board that enables real operation check. Please ask AB07-USB3FMC adapter board to Design Gateway.

Recommended design skill

To implement this IP Core to user circuit, technical skill about EDK and Microblaze are required. And general knowledge about high-speed interface standard are also recommended. Moreover knowledge of the protocol specification of USB3.0 standard for hardware debugging and USB device specification for software development and debugging are required.

Ordering Information

This product is available directly from Design Gateway company. Please contact Design Gateway for pricing and additional information about this product using the contact information on the front page of this datasheet.

History

Revision	Date	Description
1.0	May-20-2011	Release 1 st English version
1.1E	04-March-2015	Fixed some description
1.2E	09-Mar-2015	Added O_LAN_POL and removed I_DS_PORT (Table2 page6)
1.3E	22-Apr-2015	Added some feature in IP-core register
1.4E	13-May-2015	Add 7-series device support